Suppr超能文献

由于结构模型的差异和不确定性,证据综合得出了较高的社会碳成本。

Synthesis of evidence yields high social cost of carbon due to structural model variation and uncertainties.

作者信息

Moore Frances C, Drupp Moritz A, Rising James, Dietz Simon, Rudik Ivan, Wagner Gernot

机构信息

Department of Environmental Science and Policy, University of California, Davis, CA 95616.

Department of Economics and Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2410733121. doi: 10.1073/pnas.2410733121. Epub 2024 Dec 17.

Abstract

Estimating the cost to society from a ton of CO-termed the social cost of carbon (SCC)-requires connecting a model of the climate system with a representation of the economic and social effects of changes in climate, and the aggregation of diverse, uncertain impacts across both time and space. A growing literature has examined the effect of fundamental structural elements of the models supporting SCC calculations. This work has accumulated in a piecemeal fashion, leaving their relative importance unclear. Here, we perform a comprehensive synthesis of the evidence on the SCC, combining 1,823 estimates of the SCC from 147 studies with a survey of authors of these studies. The distribution of published 2020 SCC values is wide and substantially right-skewed, showing evidence of a heavy right tail (truncated mean of $132). ANOVA reveals important roles for the inclusion of persistent damages, the representation of the Earth system, and distributional weighting. However, our survey reveals that experts believe the literature underestimates the SCC due to an undersampling of model structures, incomplete characterization of damages, and high discount rates. To address this imbalance, we train a random forest model on variation in the literature and use it to generate a synthetic SCC distribution that more closely matches expert assessments of appropriate model structure and discounting. This synthetic distribution has a mean of $283 per ton CO for a 2020 pulse year (5% to 95% range: $32 to $874), higher than most official government estimates, including a 2023 update from the U.S. EPA.

摘要

估算一吨二氧化碳给社会带来的成本(即所谓的碳社会成本,SCC),需要将气候系统模型与气候变化的经济和社会影响的表征联系起来,并汇总不同时空的各种不确定影响。越来越多的文献研究了支持SCC计算的模型的基本结构要素的影响。这项工作是零散积累起来的,其相对重要性尚不清楚。在此,我们对SCC的证据进行了全面综合,将来自147项研究的1823个SCC估计值与对这些研究作者的调查相结合。2020年公布的SCC值分布广泛且严重右偏,显示出有一个很重的右尾(截断均值为132美元)。方差分析揭示了纳入持续性损害、地球系统表征和分配加权的重要作用。然而,我们的调查显示,专家们认为该文献低估了SCC,原因是模型结构抽样不足、损害特征描述不完整以及贴现率过高。为了解决这种不平衡,我们根据文献中的变化训练了一个随机森林模型,并用它来生成一个更符合专家对适当模型结构和贴现评估的合成SCC分布。对于2020年脉冲年,这种合成分布的均值为每吨二氧化碳283美元(5%至95%范围:32美元至874美元),高于大多数官方政府估计值,包括美国环境保护局2023年的更新数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9732/11670083/5886954534f3/pnas.2410733121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验