Suppr超能文献

一个用于抗体表征的共识平台。

A consensus platform for antibody characterization.

作者信息

Ayoubi Riham, Ryan Joel, Gonzalez Bolivar Sara, Alende Charles, Ruiz Moleon Vera, Fotouhi Maryam, Alqazzaz Mona, Southern Kathleen, Alshafie Walaa, Baker Matt R, Ball Alexander R, Callahan Danielle, Cooper Jeffery A, Crosby Katherine, Harvey Kevin J, Houston Douglas W, Kumaran Ravindran, Rego Meghan, Schofield Christine, Wu Hai, Biddle Michael S, Brown Claire M, Kahn Richard A, Bandrowski Anita, Virk Harvinder S, Edwards Aled M, McPherson Peter S, Laflamme Carl

机构信息

Department of Neurology and Neurosurgery, Structural Genomics Consortium, the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Advanced BioImaging Facility, McGill University, Montreal, Quebec, Canada.

出版信息

Nat Protoc. 2024 Dec 17. doi: 10.1038/s41596-024-01095-8.

Abstract

Antibody-based research applications are critical for biological discovery. Yet there are no industry standards for comparing the performance of antibodies in various applications. We describe a knockout cell line-based antibody characterization platform, developed and approved jointly by industry and academic researchers, that enables the systematic comparison of antibody performance in western blot, immunoprecipitation and immunofluorescence. The scalable protocols, which require minimal technological resources, consist of (1) the identification of appropriate cell lines for antibody characterization studies, (2) development/contribution of isogenic knockout controls, and (3) a series of antibody characterization procedures focused on the most common applications of antibodies in research. We provide examples of expected outcomes to guide antibody users in evaluating antibody performance. Central to our approach is advocating for transparent and open data sharing, enabling a community effort to identify specific antibodies for all human proteins. Mid-level graduate students with training in biochemistry and prior experience in cell culture and microscopy can complete the protocols for a specific protein within 1 month while working part-time on this effort. Antibody characterization is needed to meet standards for resource validation and data reproducibility, which are increasingly required by journals and funding agencies.

摘要

基于抗体的研究应用对于生物学发现至关重要。然而,在比较抗体在各种应用中的性能方面,尚无行业标准。我们描述了一个基于基因敲除细胞系的抗体表征平台,该平台由行业和学术研究人员联合开发并批准,能够在蛋白质印迹、免疫沉淀和免疫荧光中系统地比较抗体性能。这些可扩展的方案所需技术资源极少,包括:(1)为抗体表征研究鉴定合适的细胞系;(2)开发/提供同基因敲除对照;(3)一系列针对抗体在研究中最常见应用的抗体表征程序。我们提供了预期结果示例,以指导抗体使用者评估抗体性能。我们方法的核心是倡导透明和开放的数据共享,推动科学界共同努力为所有人类蛋白质鉴定特定抗体。具有生物化学培训背景且有细胞培养和显微镜操作经验的中级研究生,在兼职进行这项工作时,可在1个月内完成针对特定蛋白质的方案。为满足期刊和资助机构日益要求的资源验证和数据可重复性标准,需要进行抗体表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验