Lu Xingyuan, Pham Minh, Negrini Elisa, Davis Damek, Osher Stanley J, Miao Jianwei
Department of Physics & Astronomy and California NanoSystems Institute, <a href="https://ror.org/046rm7j60">University of California, Los Angeles</a>, California 90095, USA.
School of Physical Science and Technology, <a href="https://ror.org/05t8y2r12">Soochow University</a>, Suzhou 215006, China.
Phys Rev E. 2024 Nov;110(5-1):054407. doi: 10.1103/PhysRevE.110.054407.
We demonstrate that in situ coherent diffractive imaging (CDI), which leverages the coherent interference between strong and weak beams to illuminate static and dynamic structures, can serve as a highly dose-efficient imaging method. At low doses, in situ CDI can achieve higher resolution than perfect lenses with the point spread function as a delta function. Both our numerical simulations and experimental results demonstrate that combining in situ CDI with ptychography can reduce the required dose by up to two orders of magnitude compared with ptychography alone. We anticipate that computational microscopy based on in situ CDI can be applied across various imaging modalities using photons and electrons for low-dose imaging of radiation-sensitive materials and biological samples.
我们证明,原位相干衍射成像(CDI)利用强光束和弱光束之间的相干干涉来照亮静态和动态结构,可作为一种高剂量效率的成像方法。在低剂量下,原位CDI能够实现比点扩散函数为狄拉克函数的理想透镜更高的分辨率。我们的数值模拟和实验结果均表明,与单独的叠层成像相比,将原位CDI与叠层成像相结合可将所需剂量降低多达两个数量级。我们预计,基于原位CDI的计算显微镜可应用于使用光子和电子的各种成像模式,用于对辐射敏感材料和生物样品进行低剂量成像。