Lamberger Zan, Priebe Vivien, Ryma Matthias, Lang Gregor
Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany.
Small Methods. 2025 Mar;9(3):e2401060. doi: 10.1002/smtd.202401060. Epub 2024 Dec 17.
A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging. However, existing fragmentation methods are often material-specific, poorly scalable, and provide limited control over fragment size and shape. A novel workflow is introduced for producing fiber fragments applicable to various materials and fabrication techniques such as electrospinning, melt-electrowriting, fused deposition modeling, wet spinning, and microfluidic spinning. The method uses a sacrificial membrane as a substrate for precise cryo-sectioning of fibers. A significant advantage is that no additional handling steps, such as fiber detachment or transfer, are needed, resulting in highly reproducible fiber sectioning with a quasi-monodisperse length distribution. The membrane can be rolled before cutting, preventing fibers from sticking together and significantly increasing production efficiency. This method is also versatile, applicable to multiple fiber types and materials without re-parameterization. Cell culture experiments demonstrate that the fibers maintain key properties necessary for cell-fiber interactions, making them suitable for systematic screenings in the development of anisotropic 3D tissue models.
生物制造的一个关键目标是生产具有仿生特性的3D组织模型。在天然组织中,主要由胶原蛋白组成的纤维在稳定细胞外基质并在空间上对其进行组织方面发挥着关键作用。为了在3D打印中使用仿生纤维来增强生物墨水,纤维破碎对于防止喷嘴堵塞是必要的。然而,现有的破碎方法往往是针对特定材料的,扩展性较差,并且对碎片的大小和形状控制有限。本文介绍了一种新颖的工作流程,用于生产适用于各种材料和制造技术(如静电纺丝、熔体静电纺丝、熔融沉积建模、湿法纺丝和微流控纺丝)的纤维碎片。该方法使用牺牲膜作为底物对纤维进行精确的冷冻切片。一个显著的优点是不需要额外的处理步骤,如纤维分离或转移,从而实现具有准单分散长度分布的高度可重复的纤维切片。在切割前可以将膜卷起,防止纤维粘在一起并显著提高生产效率。该方法还具有通用性,无需重新设置参数即可适用于多种纤维类型和材料。细胞培养实验表明,这些纤维保持了细胞与纤维相互作用所需的关键特性,使其适用于各向异性3D组织模型开发中的系统筛选。