Navaneethan Balchandar, Amoli Mehdi Salar, Yang Yen-Ching, Rezapourdamanab Sarah, Tseng Chiao-Yu, Singh Yamini, Guo Chin-Lin, Serpooshan Vahid, Chou Chia-Fu
Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC.
Biomedical Translational Research Center, National Biotechnology Research Park, Academia Sinica, Taipei 11571, Taiwan, ROC.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):47878-47893. doi: 10.1021/acsami.5c07425. Epub 2025 Jul 22.
3D bioprinting enables cell-laden hydrogel construct fabrication in a layer-by-layer fashion but faces scalability challenges due to the mechanical weakness of hydrogels. Matrix reinforcement compromises cellular activity, creating a scalability-functionality trade-off that remains unresolved as sophisticated strategies including sequential and embedded printing fail to effectively overcome these limitations. This study presents an alternative approach by integrating autopilot single-jet electrospun (AJ-3D ES) 3D PCL fiber scaffolds with hydrogels, achieving anatomical precision, mechanical robustness, and enhanced cell function. Hydrogel dip-coating of anatomically structured PCL scaffolds enabled organ-scale cellular constructs. By providing an ECM-mimicking porous fiber network, embedded cells mitigated the limitations of hydrogel stiffness (even ∼50 kPa) and facilitated cell-cell interactions, supporting epithelialization, fibroblast clustering, and 3D phase-separated HepG2-HUVEC co-cultures. Contour 3D bioprinting along PCL fiber scaffold topographies facilitated endothelial patterning for vascularization and native-tissue mimicking complexity. Volumetric scalability was demonstrated through hydrogel casting, embedded bioprinting, and modular stacking within 3D PCL fiber scaffolds, ensuring hydrogel integrity while maintaining medium diffusion for sustained cell survival and function. In vivo studies confirmed the proangiogenic nature of PCL fiber scaffolds with tissue bridging via cell infiltration and ECM collagen deposition, underscoring clinical translational potential. By integrating topographic and volumetric flexibility, this approach advances biofabrication strategies for functional tissue and organ constructs.
3D生物打印能够以逐层方式制造载有细胞的水凝胶构建体,但由于水凝胶的机械强度较弱,面临着可扩展性挑战。基质增强会损害细胞活性,从而产生可扩展性与功能性之间的权衡,而包括顺序打印和嵌入式打印在内的复杂策略未能有效克服这些限制,这一权衡问题仍未得到解决。本研究提出了一种替代方法,即将自动驾驶单喷电纺(AJ-3D ES)3D聚己内酯(PCL)纤维支架与水凝胶相结合,实现解剖学精度、机械稳健性和增强的细胞功能。对具有解剖结构的PCL支架进行水凝胶浸涂可实现器官尺度的细胞构建体。通过提供模仿细胞外基质的多孔纤维网络,嵌入的细胞减轻了水凝胶硬度(甚至约50千帕)的限制,并促进了细胞间相互作用,支持上皮形成、成纤维细胞聚集以及3D相分离的 HepG2-HUVEC共培养。沿着PCL纤维支架拓扑结构进行轮廓3D生物打印有助于实现血管化的内皮图案化和模仿天然组织的复杂性。通过水凝胶浇铸、嵌入式生物打印以及在3D PCL纤维支架内进行模块化堆叠,证明了体积可扩展性,确保了水凝胶的完整性,同时保持培养基扩散以维持细胞存活和功能。体内研究证实了PCL纤维支架具有促血管生成的特性,通过细胞浸润和细胞外基质胶原蛋白沉积实现组织桥接,突出了其临床转化潜力。通过整合地形和体积灵活性,这种方法推动了功能性组织和器官构建体的生物制造策略。