Suppr超能文献

通过计算结构生物学方法验证的表皮生长因子受体(EGFR)抑制剂的监督筛选

Supervised Screening of EGFR Inhibitors Validated through Computational Structural Biology Approaches.

作者信息

Mehmood Aamir, Li Daixi, Li Jiayi, Kaushik Aman Chandra, Wei Dong-Qing

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

出版信息

ACS Med Chem Lett. 2024 Dec 2;15(12):2190-2200. doi: 10.1021/acsmedchemlett.4c00385. eCollection 2024 Dec 12.

Abstract

One of the prominent challenges in breast cancer (BC) treatment is human epidermal growth factor receptor (EGFR) overexpression, which facilitates tumor proliferation and presents a viable target for anticancer therapies. This study integrates multiomics data to pinpoint promising therapeutic compounds and employs a machine learning (ML)-based similarity search to identify effective alternatives. We used BC cell line data from the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases and single-cell RNA sequencing (scRNA-seq) information that established afatinib as an efficacious candidate demonstrating superior IC values. Next, ML models, including support vector machine (SVM), artificial neural networks (ANN), and random forest (RF), were trained on ChEMBL data to classify compounds with similar activity to the reference drug as active or inactive. The promising candidates underwent computational structural biology assessments for their molecular interactions and conformational dynamics. Our findings indicate that compounds ChEMBL233324, ChEMBL233325, ChEMBL234580, and ChEMBL372692 exhibit potent repressive action against EGFR, underscoring their potential as active antibreast cancer agents.

摘要

乳腺癌(BC)治疗中的一个突出挑战是人类表皮生长因子受体(EGFR)的过度表达,它促进肿瘤增殖,是抗癌治疗的一个可行靶点。本研究整合多组学数据以确定有前景的治疗化合物,并采用基于机器学习(ML)的相似性搜索来识别有效的替代物。我们使用了来自癌症细胞系百科全书(CCLE)和癌症药物敏感性基因组学(GDSC)数据库的BC细胞系数据以及单细胞RNA测序(scRNA-seq)信息,确定阿法替尼是一个有效的候选药物,其IC值表现优异。接下来,在ChEMBL数据上训练包括支持向量机(SVM)、人工神经网络(ANN)和随机森林(RF)在内的ML模型,以将与参考药物具有相似活性的化合物分类为活性或非活性。对有前景的候选物进行了分子相互作用和构象动力学的计算结构生物学评估。我们的研究结果表明,化合物ChEMBL233324、ChEMBL233325、ChEMBL234580和ChEMBL372692对EGFR表现出强效抑制作用,突出了它们作为活性抗乳腺癌药物的潜力。

相似文献

9
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

7
Afatinib.阿法替尼
Recent Results Cancer Res. 2018;211:199-215. doi: 10.1007/978-3-319-91442-8_14.
10
Random Forest.随机森林
J Insur Med. 2017;47(1):31-39. doi: 10.17849/insm-47-01-31-39.1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验