Suppr超能文献

MT-SCnet:用于微观高光谱图像分割的多尺度令牌划分与空间通道融合变压器网络

MT-SCnet: multi-scale token divided and spatial-channel fusion transformer network for microscopic hyperspectral image segmentation.

作者信息

Cao Xueying, Gao Hongmin, Zhang Haoyan, Fei Shuyu, Xu Peipei, Wang Zhijian

机构信息

College of Computer Science and Software Engineering, Hohai University, Nanjing, China.

Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.

出版信息

Front Oncol. 2024 Dec 3;14:1469293. doi: 10.3389/fonc.2024.1469293. eCollection 2024.

Abstract

INTRODUCTION

Hybrid architectures based on convolutional neural networks and Transformers, effectively captures both the local details and the overall structural context of lesion tissues and cells, achieving highly competitive segmentation results in microscopic hyperspectral image (MHSI) segmentation tasks. However, the fixed tokenization schemes and single-dimensional feature extraction and fusion in existing methods lead to insufficient global feature extraction in hyperspectral pathology images.

METHODS

Base on this, we propose a multi-scale token divided and spatial-channel fusion transformer network (MT-SCnet) for MHSIs segmentation. Specifically, we first designed a Multi-Scale Token Divided module. It divides token at different scale based on mirror padding and promotes information interaction and fusion between different tokens to obtain more representative features for subsequent global feature extraction. Secondly, a novel spatial channel fusion transformer was designed to capture richer features from spatial and channel dimensions, and eliminates the semantic gap between features from different dimensions based on cross-attention fusion block. Additionally, to better restore spatial information, deformable convolutions were introduced in decoder.

RESULTS

The Experiments on two MHSI datasets demonstrate that MT-SCnet outperforms the comparison methods.

DISCUSSION

This advance has significant implications for the field of MHSIs segmentation. Our code is freely available at https://github.com/sharycao/MT-SCnet.

摘要

引言

基于卷积神经网络和Transformer的混合架构能够有效地捕捉病变组织和细胞的局部细节以及整体结构背景,在显微高光谱图像(MHSI)分割任务中取得了极具竞争力的分割结果。然而,现有方法中固定的令牌化方案以及单维特征提取与融合导致高光谱病理图像中的全局特征提取不足。

方法

基于此,我们提出了一种用于MHSI分割的多尺度令牌划分与空间通道融合Transformer网络(MT-SCnet)。具体而言,我们首先设计了一个多尺度令牌划分模块。它基于镜像填充在不同尺度上划分令牌,并促进不同令牌之间的信息交互与融合,以获得更具代表性的特征用于后续的全局特征提取。其次,设计了一种新颖的空间通道融合Transformer,以从空间和通道维度捕获更丰富的特征,并基于交叉注意力融合块消除不同维度特征之间的语义差距。此外,为了更好地恢复空间信息,在解码器中引入了可变形卷积。

结果

在两个MHSI数据集上的实验表明,MT-SCnet优于比较方法。

讨论

这一进展对MHSI分割领域具有重要意义。我们的代码可在https://github.com/sharycao/MT-SCnet上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5a1/11649505/a623ab178598/fonc-14-1469293-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验