Li Shuwei, Hu Tao, Wang Lianming, McMahan Christopher S, Tebbs Joshua M
School of Economics and Statistics, Guangzhou University, Daxuecheng Road 230, Guangzhou, Guangdong 510006, China.
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.
Group testing is an effective way to reduce the time and cost associated with conducting large-scale screening for infectious diseases. Benefits are realized through testing pools formed by combining specimens, such as blood or urine, from different individuals. In some studies, individuals are assessed only once and a time-to-event endpoint is recorded, for example, the time until infection. Combining group testing with this type of endpoint results in group-tested current status data (Petito & Jewell, 2016). To analyse these complex data, we propose methods that estimate a proportional hazard regression model based on test outcomes from measuring the pools. A sieve maximum likelihood estimation approach is developed that approximates the cumulative baseline hazard function with a piecewise constant function. To identify the sieve estimator, a computationally efficient expectation-maximization algorithm is derived by using data augmentation. Asymptotic properties of both the parametric and nonparametric components of the sieve estimator are then established by applying modern empirical process theory. Numerical results from simulation studies show that our proposed method performs nominally and has advantages over the corresponding estimation method based on individual testing results. We illustrate our work by analysing a chlamydia dataset collected by the State Hygienic Laboratory at the University of Iowa.
分组检测是一种有效的方法,可减少与开展大规模传染病筛查相关的时间和成本。通过检测由不同个体的样本(如血液或尿液)组合而成的样本池来实现益处。在一些研究中,个体仅被评估一次,并记录事件发生时间终点,例如感染前的时间。将分组检测与这类终点相结合会产生分组检测的当前状态数据(佩蒂托和朱厄尔,2016年)。为了分析这些复杂数据,我们提出了基于对样本池检测结果来估计比例风险回归模型的方法。开发了一种筛法最大似然估计方法,该方法用分段常数函数逼近累积基线风险函数。为了确定筛估计量,通过数据扩充推导了一种计算效率高的期望最大化算法。然后应用现代经验过程理论建立筛估计量的参数和非参数分量的渐近性质。模拟研究的数值结果表明,我们提出的方法表现良好,并且相对于基于个体检测结果的相应估计方法具有优势。我们通过分析爱荷华大学州卫生实验室收集的衣原体数据集来说明我们的工作。