Suppr超能文献

成组检测现状数据的回归分析

Regression analysis of group-tested current status data.

作者信息

Li Shuwei, Hu Tao, Wang Lianming, McMahan Christopher S, Tebbs Joshua M

机构信息

School of Economics and Statistics, Guangzhou University, Daxuecheng Road 230, Guangzhou, Guangdong 510006, China.

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.

出版信息

Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.

Abstract

Group testing is an effective way to reduce the time and cost associated with conducting large-scale screening for infectious diseases. Benefits are realized through testing pools formed by combining specimens, such as blood or urine, from different individuals. In some studies, individuals are assessed only once and a time-to-event endpoint is recorded, for example, the time until infection. Combining group testing with this type of endpoint results in group-tested current status data (Petito & Jewell, 2016). To analyse these complex data, we propose methods that estimate a proportional hazard regression model based on test outcomes from measuring the pools. A sieve maximum likelihood estimation approach is developed that approximates the cumulative baseline hazard function with a piecewise constant function. To identify the sieve estimator, a computationally efficient expectation-maximization algorithm is derived by using data augmentation. Asymptotic properties of both the parametric and nonparametric components of the sieve estimator are then established by applying modern empirical process theory. Numerical results from simulation studies show that our proposed method performs nominally and has advantages over the corresponding estimation method based on individual testing results. We illustrate our work by analysing a chlamydia dataset collected by the State Hygienic Laboratory at the University of Iowa.

摘要

分组检测是一种有效的方法,可减少与开展大规模传染病筛查相关的时间和成本。通过检测由不同个体的样本(如血液或尿液)组合而成的样本池来实现益处。在一些研究中,个体仅被评估一次,并记录事件发生时间终点,例如感染前的时间。将分组检测与这类终点相结合会产生分组检测的当前状态数据(佩蒂托和朱厄尔,2016年)。为了分析这些复杂数据,我们提出了基于对样本池检测结果来估计比例风险回归模型的方法。开发了一种筛法最大似然估计方法,该方法用分段常数函数逼近累积基线风险函数。为了确定筛估计量,通过数据扩充推导了一种计算效率高的期望最大化算法。然后应用现代经验过程理论建立筛估计量的参数和非参数分量的渐近性质。模拟研究的数值结果表明,我们提出的方法表现良好,并且相对于基于个体检测结果的相应估计方法具有优势。我们通过分析爱荷华大学州卫生实验室收集的衣原体数据集来说明我们的工作。

相似文献

1
Regression analysis of group-tested current status data.成组检测现状数据的回归分析
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.

本文引用的文献

4
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
5
Misclassified group-tested current status data.误分类的群体检测当前状态数据。
Biometrika. 2016 Dec;103(4):801-815. doi: 10.1093/biomet/asw043. Epub 2016 Dec 8.
8
Bayesian regression for group testing data.用于分组测试数据的贝叶斯回归
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.
9
Hierarchical group testing for multiple infections.多重感染的分层分组检测
Biometrics. 2017 Jun;73(2):656-665. doi: 10.1111/biom.12589. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验