Suppr超能文献

用于分组测试数据的贝叶斯回归

Bayesian regression for group testing data.

作者信息

McMahan Christopher S, Tebbs Joshua M, Hanson Timothy E, Bilder Christopher R

机构信息

Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634, U.S.A.

Department of Statistics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

出版信息

Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.

Abstract

Group testing involves pooling individual specimens (e.g., blood, urine, swabs, etc.) and testing the pools for the presence of a disease. When individual covariate information is available (e.g., age, gender, number of sexual partners, etc.), a common goal is to relate an individual's true disease status to the covariates in a regression model. Estimating this relationship is a nonstandard problem in group testing because true individual statuses are not observed and all testing responses (on pools and on individuals) are subject to misclassification arising from assay error. Previous regression methods for group testing data can be inefficient because they are restricted to using only initial pool responses and/or they make potentially unrealistic assumptions regarding the assay accuracy probabilities. To overcome these limitations, we propose a general Bayesian regression framework for modeling group testing data. The novelty of our approach is that it can be easily implemented with data from any group testing protocol. Furthermore, our approach will simultaneously estimate assay accuracy probabilities (along with the covariate effects) and can even be applied in screening situations where multiple assays are used. We apply our methods to group testing data collected in Iowa as part of statewide screening efforts for chlamydia, and we make user-friendly R code available to practitioners.

摘要

分组检测涉及将个体样本(如血液、尿液、拭子等)汇集起来,并检测这些样本池是否存在疾病。当个体协变量信息可用时(如年龄、性别、性伴侣数量等),一个常见的目标是在回归模型中将个体的真实疾病状态与协变量联系起来。在分组检测中估计这种关系是一个非标准问题,因为无法观察到个体的真实状态,并且所有检测结果(样本池和个体的)都可能因检测误差而出现错误分类。以前用于分组检测数据的回归方法可能效率低下,因为它们仅限于使用初始样本池的检测结果,和/或它们对检测准确性概率做出了潜在不现实的假设。为了克服这些局限性,我们提出了一个用于对分组检测数据进行建模的通用贝叶斯回归框架。我们方法的新颖之处在于它可以很容易地用来自任何分组检测方案的数据来实现。此外,我们的方法将同时估计检测准确性概率(以及协变量效应),甚至可以应用于使用多种检测方法的筛查情况。我们将我们的方法应用于爱荷华州收集的分组检测数据,作为全州衣原体筛查工作的一部分,并且我们向从业者提供了用户友好的R代码。

相似文献

1
Bayesian regression for group testing data.用于分组测试数据的贝叶斯回归
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.
2
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
5
Adaptive elastic net for group testing.用于分组测试的自适应弹性网络
Biometrics. 2019 Mar;75(1):13-23. doi: 10.1111/biom.12973. Epub 2019 Mar 8.
7
Array testing for multiplex assays.多重分析的阵列检测。
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
8
Regression analysis for multiple-disease group testing data.多病组检测数据的回归分析。
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.

引用本文的文献

3
Regression analysis of group-tested current status data.成组检测现状数据的回归分析
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.
4
Bayesian group testing regression models for spatial data.贝叶斯群组检测回归模型在空间数据中的应用。
Spat Spatiotemporal Epidemiol. 2024 Aug;50:100677. doi: 10.1016/j.sste.2024.100677. Epub 2024 Jul 23.
8
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.

本文引用的文献

1
Optimal retesting configurations for hierarchical group testing.分层分组测试的最优重新测试配置
J R Stat Soc Ser C Appl Stat. 2015 Aug 1;64(4):693-710. doi: 10.1111/rssc.12097.
3
Group testing in heterogeneous populations by using halving algorithms.使用二分算法在异质群体中进行分组检测。
J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):277-290. doi: 10.1111/j.1467-9876.2011.01008.x.
6
Regression models for group testing data with pool dilution effects.带有池稀释效应的成组检测数据的回归模型。
Biostatistics. 2013 Apr;14(2):284-98. doi: 10.1093/biostatistics/kxs045. Epub 2012 Nov 28.
7
Optimality of group testing in the presence of misclassification.存在错误分类时分组测试的最优性。
Biometrika. 2012 Mar;99(1):245-251. doi: 10.1093/biomet/asr064. Epub 2011 Dec 29.
8
Estimating the prevalence of infections in vector populations using pools of samples.使用样本池估计媒介种群中的感染流行率。
Med Vet Entomol. 2012 Dec;26(4):361-71. doi: 10.1111/j.1365-2915.2012.01015.x. Epub 2012 Apr 8.
9
Two-dimensional informative array testing.二维信息阵列测试
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验