Suppr超能文献

多重感染的分层分组检测

Hierarchical group testing for multiple infections.

作者信息

Hou Peijie, Tebbs Joshua M, Bilder Christopher R, McMahan Christopher S

机构信息

Department of Statistics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A.

出版信息

Biometrics. 2017 Jun;73(2):656-665. doi: 10.1111/biom.12589. Epub 2016 Sep 22.

Abstract

Group testing, where individuals are tested initially in pools, is widely used to screen a large number of individuals for rare diseases. Triggered by the recent development of assays that detect multiple infections at once, screening programs now involve testing individuals in pools for multiple infections simultaneously. Tebbs, McMahan, and Bilder (2013, Biometrics) recently evaluated the performance of a two-stage hierarchical algorithm used to screen for chlamydia and gonorrhea as part of the Infertility Prevention Project in the United States. In this article, we generalize this work to accommodate a larger number of stages. To derive the operating characteristics of higher-stage hierarchical algorithms with more than one infection, we view the pool decoding process as a time-inhomogeneous, finite-state Markov chain. Taking this conceptualization enables us to derive closed-form expressions for the expected number of tests and classification accuracy rates in terms of transition probability matrices. When applied to chlamydia and gonorrhea testing data from four states (Region X of the United States Department of Health and Human Services), higher-stage hierarchical algorithms provide, on average, an estimated 11% reduction in the number of tests when compared to two-stage algorithms. For applications with rarer infections, we show theoretically that this percentage reduction can be much larger.

摘要

分组检测,即个体先进行混合检测,被广泛用于对大量个体进行罕见疾病筛查。受近期能够同时检测多种感染的检测方法发展的推动,筛查项目现在涉及对个体进行混合检测以同时筛查多种感染。特布斯、麦克马汉和比尔德(2013年,《生物统计学》)最近评估了一种用于筛查衣原体和淋病的两阶段分层算法的性能,该算法是美国预防不育项目的一部分。在本文中,我们将这项工作进行推广以适应更多阶段。为了推导具有多种感染的更高阶段分层算法的操作特征,我们将混合解码过程视为一个时间非齐次的有限状态马尔可夫链。采用这种概念化方法使我们能够根据转移概率矩阵推导出检测预期数量和分类准确率的封闭形式表达式。当应用于来自四个州(美国卫生与公众服务部X地区)的衣原体和淋病检测数据时,与两阶段算法相比,更高阶段的分层算法平均可使检测数量估计减少11%。对于感染更为罕见的应用,我们从理论上表明这种减少的百分比可能会大得多。

相似文献

1
Hierarchical group testing for multiple infections.多重感染的分层分组检测
Biometrics. 2017 Jun;73(2):656-665. doi: 10.1111/biom.12589. Epub 2016 Sep 22.
2
Array testing for multiplex assays.多重分析的阵列检测。
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
6
Two-dimensional informative array testing.二维信息阵列测试
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.
7
Informative group testing for multiplex assays.多重检测的信息性分组检测
Biometrics. 2019 Mar;75(1):278-288. doi: 10.1111/biom.12988. Epub 2019 Mar 28.
8
Informative Dorfman screening.信息丰富的 Dorfman 筛查
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
9
Optimal retesting configurations for hierarchical group testing.分层分组测试的最优重新测试配置
J R Stat Soc Ser C Appl Stat. 2015 Aug 1;64(4):693-710. doi: 10.1111/rssc.12097.
10
Informative Retesting.信息性重新测试
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.

引用本文的文献

3
Regression analysis of group-tested current status data.成组检测现状数据的回归分析
Biometrika. 2024 Feb 12;111(3):1047-1061. doi: 10.1093/biomet/asae006. eCollection 2024 Sep.
5
Nested Group Testing Procedure.嵌套分组测试程序。
Commun Math Stat. 2022 Oct 1:1-31. doi: 10.1007/s40304-021-00269-0.
7
Sample pooling strategies for SARS-CoV-2 detection.用于 SARS-CoV-2 检测的样本混合策略。
J Virol Methods. 2021 Mar;289:114044. doi: 10.1016/j.jviromet.2020.114044. Epub 2020 Dec 11.
9
Array testing for multiplex assays.多重分析的阵列检测。
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
10
Informative group testing for multiplex assays.多重检测的信息性分组检测
Biometrics. 2019 Mar;75(1):278-288. doi: 10.1111/biom.12988. Epub 2019 Mar 28.

本文引用的文献

2
Group testing in heterogeneous populations by using halving algorithms.使用二分算法在异质群体中进行分组检测。
J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):277-290. doi: 10.1111/j.1467-9876.2011.01008.x.
5
Regression models for group testing data with pool dilution effects.带有池稀释效应的成组检测数据的回归模型。
Biostatistics. 2013 Apr;14(2):284-98. doi: 10.1093/biostatistics/kxs045. Epub 2012 Nov 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验