Jain Shikha, Nehra Monika, Dilbaghi Neeraj, Chaudhary Ganga Ram, Kumar Sandeep
Department of Bio-nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar-Haryana 125004, India.
Department of Chemistry & Center of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
BME Front. 2024 Dec 17;5:0078. doi: 10.34133/bmef.0078. eCollection 2024.
Mercury (Hg) has been recognized as a global pollutant with a toxic, mobile, and persistent nature. It adversely affects the ecosystem and human health. Already developed biosensors for Hg detection majorly suffer from poor sensitivity and specificity. Herein, a colorimetric/fluorimetric dual-mode sensing approach is designed for the quantitative detection of Hg. This novel sensing approach utilizes nanofluorophores, i.e., fluorescent copper nanoclusters-doped zirconia metal-organic framework (CuNCs@Zr-MOF) nanoconjugate (blue color) and -methyl mesoporphyrin IX (NMM) (red color) in combination with peroxidase-mimicking G-quadruplex DNAzyme (PMDNAzyme). In the presence of Hg, dabcyl conjugated complementary DNA with T-T mismatches form the stable duplex with the CuNCs@Zr-MOF@G-quadruplex structure through T-Hg-T base pairing. It causes the quenching of fluorescence of CuNCs@Zr-MOF (463 nm) due to the Förster resonance energy transfer (FRET) system. Moreover, the G-quadruplex (G4) structure of the aptamer enhances the fluorescence emission of NMM (610 nm). Besides this, the peroxidase-like activity of G4/hemin DNAzyme offers the colorimetric detection of Hg. The formation of duplex with PMDNAzyme increases the catalytic activity. This novel biosensing probe quantitatively detected Hg using both fluorimetry and colorimetry approaches with a low detection limit of 0.59 and 36.3 nM, respectively. It was also observed that the presence of interfering metal ions in case of real aqueous samples does not affect the performance of this novel biosensing probe. These findings confirm the considerable potential of the proposed biosensing probe to screen the concentration of Hg in aquatic products.
汞(Hg)已被公认为是一种具有毒性、流动性和持久性的全球污染物。它对生态系统和人类健康产生不利影响。已开发的用于汞检测的生物传感器主要存在灵敏度和特异性较差的问题。在此,设计了一种比色/荧光双模式传感方法用于汞的定量检测。这种新型传感方法利用了纳米荧光团,即荧光铜纳米簇掺杂的氧化锆金属有机框架(CuNCs@Zr-MOF)纳米共轭物(蓝色)和 - 甲基中卟啉IX(NMM)(红色),并结合了模拟过氧化物酶的G-四链体DNAzyme(PMDNAzyme)。在汞存在的情况下,带有T-T错配的dabcyl共轭互补DNA通过T-Hg-T碱基配对与CuNCs@Zr-MOF@G-四链体结构形成稳定的双链体。由于Förster共振能量转移(FRET)系统,这导致CuNCs@Zr-MOF(463 nm)的荧光猝灭。此外,适体的G-四链体(G4)结构增强了NMM(610 nm)的荧光发射。除此之外,G4/血红素DNAzyme的过氧化物酶样活性提供了汞的比色检测。与PMDNAzyme形成双链体增加了催化活性。这种新型生物传感探针分别使用荧光法和比色法对汞进行定量检测,检测限低至0.59 nM和36.3 nM。还观察到在实际水样中存在干扰金属离子时,不会影响这种新型生物传感探针的性能。这些发现证实了所提出的生物传感探针在筛选水产品中汞浓度方面具有巨大潜力。