Suppr超能文献

使用聚合物网络纳米颗粒的神经形态计算原语

Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles.

作者信息

Zhao Yinong, Wei Xingfei, Hernandez Rigoberto

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Nov 27;128(49):21164-21172. doi: 10.1021/acs.jpcc.4c06055. eCollection 2024 Dec 12.

Abstract

Nanoparticle networks have potential applications in brain-like computing yet their ability to adopt different states remains unexplored. In this work, we reveal the dynamics of the attachment of polyelectrolytes onto gold nanoparticles (AuNPs), using a bottom-up two-bead-monomer dissipative particle dynamics (TBM-DPD) model to show the heterogeneity of polymer coverage. We found that the use of one polyelectrolyte homopolymer limits the complexity of the possible engineered nanoparticle networks (ENPNs) that can be built. In addressing this challenge, we first found the commensurability rules between the numbers of AuNPs and poly(allylamine hydrochloride)s (PAHs). This gives rise to a well-defined valency of a AuNP which is the maximum number of PAHs that it can accommodate. We further use an engineered block copolymer, which has a conductive middle block to mediate the distance between a dimer of AuNP. We argue that by controlling the length of conductive block that is connecting the AuNPs and their respective topology, we can have ENPNs potentially adopt multiple states necessary for primitive neuromorphic computing.

摘要

纳米粒子网络在类脑计算中具有潜在应用,但它们采用不同状态的能力尚未得到探索。在这项工作中,我们揭示了聚电解质附着在金纳米粒子(AuNP)上的动力学,使用自下而上的双珠单体耗散粒子动力学(TBM-DPD)模型来展示聚合物覆盖的不均匀性。我们发现,使用一种聚电解质均聚物会限制可以构建的可能的工程化纳米粒子网络(ENPN)的复杂性。为应对这一挑战,我们首先发现了AuNP数量与聚(烯丙胺盐酸盐)(PAH)数量之间的可公度性规则。这产生了一个明确的AuNP价态,即它可以容纳的PAH的最大数量。我们进一步使用一种工程化嵌段共聚物,其具有一个导电中间嵌段来介导AuNP二聚体之间的距离。我们认为,通过控制连接AuNP的导电嵌段的长度及其各自的拓扑结构,我们可以使ENPN潜在地采用原始神经形态计算所需的多种状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96cc/11648942/09917f22cc9e/jp4c06055_0001.jpg

相似文献

1
Neuromorphic Computing Primitives Using Polymer-Networked Nanoparticles.使用聚合物网络纳米颗粒的神经形态计算原语
J Phys Chem C Nanomater Interfaces. 2024 Nov 27;128(49):21164-21172. doi: 10.1021/acs.jpcc.4c06055. eCollection 2024 Dec 12.
6
Thermal Transport through Polymer-Linked Gold Nanoparticles.通过聚合物连接的金纳米颗粒的热传输
J Phys Chem C Nanomater Interfaces. 2022 Nov 3;126(43):18511-18519. doi: 10.1021/acs.jpcc.2c05816. Epub 2022 Oct 21.

本文引用的文献

2
Heat Transfer Enhancement in Tree-Structured Polymer Linked Gold Nanoparticle Networks.树形聚合物连接金纳米粒子网络中的传热增强
J Phys Chem Lett. 2023 Nov 9;14(44):9834-9841. doi: 10.1021/acs.jpclett.3c02367. Epub 2023 Oct 27.
3
Fluorous-Directed Assembly of DNA Origami Nanostructures.氟相导向的 DNA 折纸纳米结构的组装。
ACS Nano. 2023 Jan 10;17(1):752-759. doi: 10.1021/acsnano.2c10727. Epub 2022 Dec 20.
7
Brain-inspired computing needs a master plan.脑启发计算需要一个总体规划。
Nature. 2022 Apr;604(7905):255-260. doi: 10.1038/s41586-021-04362-w. Epub 2022 Apr 13.
8
10
Programmable Matter: The Nanoparticle Atom and DNA Bond.可编程物质:纳米颗粒原子与 DNA 键。
Adv Mater. 2022 Mar;34(12):e2107875. doi: 10.1002/adma.202107875. Epub 2022 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验