Suppr超能文献

将神经网络与点击序列探测器进行比较,以揭示被动声学探测抹香鲸的时间趋势。

Comparing neural networks against click train detectors to reveal temporal trends in passive acoustic sperm whale detections.

作者信息

Garrobé Fonollosa Laia, Webber Thomas, Brotons José Maria, Cerdà Margalida, Gillespie Douglas, Pirotta Enrico, Rendell Luke

机构信息

Sea Mammal Research Unit, School of Biology, University of St Andrews, KY16 9TH, St Andrews, United Kingdom.

The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, Scotland, United Kingdom.

出版信息

J Acoust Soc Am. 2024 Dec 1;156(6):4073-4084. doi: 10.1121/10.0034602.

Abstract

Passive acoustic monitoring (PAM) is an increasingly popular tool to study vocalising species. The amount of data generated by PAM studies calls for robust automatic classifiers. Deep learning (DL) techniques have been proven effective in identifying acoustic signals in challenging datasets, but due to their black-box nature their underlying biases are hard to quantify. This study compares human analyst annotations, a multi-hypothesis tracking (MHT) click train classifier and a DL-based acoustic classifier to classify acoustic recordings based on the presence or absence of sperm whale (Physeter macrocephalus) click trains and study the temporal and spatial distributions of the Mediterranean sperm whale subpopulation around the Balearic Islands. The MHT and DL classifiers showed agreements with human labels of 85.7% and 85.0%, respectively, on data from sites they were trained on, but both saw a drop in performance when deployed on a new site. Agreement rates between classifiers surpassed those between human experts. Modeled seasonal and diel variations in sperm whale detections for both classifiers showed compatible results, revealing an increase in occurrence and diurnal activity during the summer and autumn months. This study highlights the strengths and limitations of two automatic classification algorithms to extract biologically useful information from large acoustic datasets.

摘要

被动声学监测(PAM)是一种越来越受欢迎的用于研究发声物种的工具。PAM研究产生的数据量需要强大的自动分类器。深度学习(DL)技术已被证明在具有挑战性的数据集中识别声学信号方面是有效的,但由于其黑箱性质,其潜在偏差难以量化。本研究比较了人类分析师注释、多假设跟踪(MHT)滴答声序列分类器和基于深度学习的声学分类器,以根据抹香鲸(Physeter macrocephalus)滴答声序列的有无对声学记录进行分类,并研究巴利阿里群岛周围地中海抹香鲸亚种群的时间和空间分布。MHT和DL分类器在其训练数据的站点上与人类标签的一致性分别为85.7%和85.0%,但在新站点上部署时,两者的性能均有所下降。分类器之间的一致率超过了人类专家之间的一致率。两个分类器对抹香鲸检测的模拟季节性和昼夜变化显示出兼容的结果,揭示了在夏季和秋季月份出现频率和昼夜活动的增加。本研究强调了两种自动分类算法从大型声学数据集中提取生物学有用信息的优势和局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验