Macečková Diana, Vaňková Lenka, Bufka Jiří, Hošek Petr, Moravec Jiří, Pitule Pavel
Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, Pilsen, 32300, Czech Republic.
Mol Biol Rep. 2024 Dec 18;52(1):57. doi: 10.1007/s11033-024-10172-w.
The genetic and epigenetic alterations observed in acute myeloid leukemia (AML) contribute to its heterogeneity, influencing disease progression response to therapy, and patient outcomes. The use of antisense oligonucleotides (ASOs) technology allows for the design of oligonucleotide inhibitors based on gene sequence information alone, enabling precise targeting of key molecular pathways or specific genes implicated in AML.
Midostaurin, a FLT3 specific inhibitor and ASOs targeting particular genes, exons, or mutations was conducted using AML models. This ASOs treatment was designed to bind to exon 7 of the MBNL1 (muscleblind-like) gene. Another target was the FLT3 gene, focusing on two aspects: (a) FLT3-ITD (internal tandem duplication), to inhibit the expression of this aberrant gene form, and (b) the FLT3 in general. Treated and untreated cells were analyzed using quantitative PCR (qPCR), dot blot, and Raman spectroscopy. This study contrasts midostaurin with ASOs that inhibit FLT3 protein production or its isoforms via mRNA degradation. A trend of increased FLT3 expression was observed in midostaurin-treated cells, while ASO-treated cells showed decreased expression, though these changes were not statistically significant.
In AML, exon 7 of MBNL1 is involved in several cellular processes and in this study, exon 7 of MBNL1 was targeted for method optimization, with the highest block of the exon 7 gene variant observed 48 h post-transfection. Midostaurin, a multitargeted kinase inhibitor, acts against the receptor tyrosine kinase FLT3, a critical molecule in AML pathogenesis. While midostaurin blocks FLT3 signaling pathways, it paradoxically increases FLT3 expression.
急性髓系白血病(AML)中观察到的基因和表观遗传改变导致了其异质性,影响疾病进展、对治疗的反应以及患者预后。反义寡核苷酸(ASO)技术的应用使得能够仅基于基因序列信息设计寡核苷酸抑制剂,从而精准靶向AML中涉及的关键分子途径或特定基因。
使用AML模型进行了米哚妥林(一种FLT3特异性抑制剂)以及靶向特定基因、外显子或突变的ASO实验。这种ASO治疗旨在与MBNL1(肌肉盲样)基因的外显子7结合。另一个靶点是FLT3基因,聚焦于两个方面:(a)FLT3内部串联重复(FLT3-ITD),以抑制这种异常基因形式的表达,以及(b)一般的FLT3。使用定量PCR(qPCR)、斑点印迹和拉曼光谱对处理过和未处理的细胞进行分析。本研究将米哚妥林与通过mRNA降解抑制FLT3蛋白产生或其异构体的ASO进行了对比。在米哚妥林处理的细胞中观察到FLT3表达有增加的趋势,而ASO处理的细胞则显示表达降低,不过这些变化无统计学意义。
在AML中,MBNL1的外显子7参与多个细胞过程,在本研究中,针对MBNL1的外显子7进行方法优化,转染后48小时观察到外显子7基因变体的最高阻断。米哚妥林是一种多靶点激酶抑制剂,作用于受体酪氨酸激酶FLT3,这是AML发病机制中的关键分子。虽然米哚妥林阻断FLT3信号通路,但反常地增加了FLT3的表达。