Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany.
Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany.
J Biophotonics. 2020 Sep;13(9):e202000129. doi: 10.1002/jbio.202000129. Epub 2020 Jul 23.
A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.
可以看到,具有超多重能力的振动成像的革命性途径是在最近发展的拉曼活性生物正交标记物或标签中看到的。这些标记物和同位素标记物代表了一组化学惰性和小的修饰,这些修饰可以被引入到任何感兴趣的生物分子中,然后供给单个细胞或整个生物体。本综述的重点是在活体内对生物分子进行靶向成像的自发拉曼光谱和受激发射拉曼光谱领域的最新进展。在介绍了常见的生物正交标记策略之后,我们展示了它们在细菌细胞中耐药模式分析、真核细胞中药物与细胞相互作用的研究以及整个组织样本的癌症诊断中的应用。最终,这种方法被证明是一种灵活且强大的活体成像工具,可以在多个长度尺度上进行成像,并提供与基于荧光的成像相当的信息,而无需使用庞大的荧光标记物。