Soldado-Magraner Joana, Mante Valerio, Sahani Maneesh
Gatsby Computational Neuroscience Unit, University College London, 25 Howland St, London W1T 4JG, UK.
Institute of Neuroinformatics, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Sci Adv. 2024 Dec 20;10(51):eadl4743. doi: 10.1126/sciadv.adl4743. Epub 2024 Dec 18.
The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.
前额叶皮层(PFC)复杂的神经活动是认知过程的一个标志。这些丰富的动力学是如何出现并支持神经计算的,目前在很大程度上尚不清楚。在这里,我们通过将动力学模型拟合到行为猴子的PFC群体反应中,推断出感觉输入的上下文依赖整合背后的机制。一类由外部输入驱动的实现线性动力学的模型准确地捕捉了上下文内的PFC反应,并揭示了同等有效的机制。一个模型实现了上下文依赖的循环动力学,并依赖于瞬态输入放大;另一个模型则依赖于输入的微妙上下文调制,为解释灵活的PFC反应和行为所需的感觉区域的注意力效应提供了限制。两个模型都揭示了从PFC反应的定性描述中不明显的输入和循环动力学特性。通过揭示与复杂皮层动力学在数量上一致的机制,我们的建模方法提供了一个有原则的通用框架,以将神经群体活动与计算联系起来。