Hu Amber, Zoltowski David, Nair Aditya, Anderson David, Duncker Lea, Linderman Scott
Stanford University.
Caltech & Howard Hughes Medical Institute.
ArXiv. 2025 Jan 13:arXiv:2408.03330v3.
Understanding how the collective activity of neural populations relates to computation and ultimately behavior is a key goal in neuroscience. To this end, statistical methods which describe high-dimensional neural time series in terms of low-dimensional latent dynamics have played a fundamental role in characterizing neural systems. Yet, what constitutes a successful method involves two opposing criteria: (1) methods should be expressive enough to capture complex nonlinear dynamics, and (2) they should maintain a notion of interpretability often only warranted by simpler linear models. In this paper, we develop an approach that balances these two objectives: the (gpSLDS). Our method builds on previous work modeling the latent state evolution via a stochastic differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs). We propose a novel kernel function which enforces smoothly interpolated locally linear dynamics, and therefore expresses flexible - yet interpretable - dynamics akin to those of recurrent switching linear dynamical systems (rSLDS). Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics. To fit our models, we leverage a modified learning objective which improves the estimation accuracy of kernel hyperparameters compared to previous GP-SDE fitting approaches. We apply our method to synthetic data and data recorded in two neuroscience experiments and demonstrate favorable performance in comparison to the rSLDS.
理解神经群体的集体活动如何与计算以及最终的行为相关联,是神经科学的一个关键目标。为此,那些根据低维潜在动力学来描述高维神经时间序列的统计方法,在刻画神经系统方面发挥了基础性作用。然而,一种成功的方法需要兼顾两个相互对立的标准:(1)方法应该具有足够的表现力,以捕捉复杂的非线性动力学;(2)它们应该保持一种通常只有更简单的线性模型才具备的可解释性概念。在本文中,我们开发了一种平衡这两个目标的方法:广义概率状态线性动态系统(gpSLDS)。我们的方法建立在之前通过随机微分方程对潜在状态演化进行建模的工作基础上,该随机微分方程的非线性动力学由高斯过程(GP - SDEs)描述。我们提出了一种新颖的核函数,它能强制实现平滑插值的局部线性动力学,从而表达出类似于递归切换线性动态系统(rSLDS)的灵活但可解释的动力学。我们的方法解决了rSLDS的关键局限性,比如在离散状态边界附近动力学中的人为振荡,同时还提供了动力学的后验不确定性估计。为了拟合我们的模型,我们利用了一种经过修改的学习目标,与之前的GP - SDE拟合方法相比,它提高了核超参数的估计精度。我们将我们的方法应用于合成数据以及在两个神经科学实验中记录的数据,并与rSLDS相比展示出了良好的性能。