Suppr超能文献

直接生长在V型槽硅衬底上的砷化镓太阳能电池。

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

作者信息

Saenz Theresa E, Boyer Jacob, Mangum John S, Neumann Anica N, Selvidge Jennifer, Collins Sarah A, Young Michelle S, Johnston Steven W, Steiner Myles A, France Ryan M, McMahon William E, Zimmerman Jeramy D, Warren Emily L

机构信息

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1341-1349. doi: 10.1021/acsami.4c18928. Epub 2024 Dec 18.

Abstract

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers. This approach eliminates the need for a metamorphic buffer to directly integrate low-TDD GaAs on Si. We used these low-TDD GaAs/V-groove Si templates to grow GaAs double heterostructures that had a minority carrier lifetime of 5.7 ns, as measured by time-resolved photoluminescence, a value consistent with the material quality associated with a 20%+ efficient GaAs solar cell. However, front-junction GaAs solar cells grown on these low-TDD substrates produced a conversion efficiency of only 6.6% without an antireflection coating. Electron channeling contrast imaging measurements on this cell showed a high density of misfit dislocations at the interface between the AlInP/GaInP window layer and the GaAs absorber and between the GaAs absorber and the GaInP back surface field (BSF), likely causing a high surface recombination velocity and thus poor performance. We showed that we could reduce (and in the case of the BSF, eliminate) these dislocations by employing an AlGaAs-based window layer and BSF. Compared to GaInP, AlGaAs has dislocation glide properties that are more similar to those of GaAs, resulting in more even threading dislocation glide between layers. AlGaAs passivation improved the external quantum efficiency and open-circuit voltage of the devices, but the overall device performance was still low at an efficiency of 7.7% without an antireflection coating, likely due to cracking in the devices. This work demonstrates a route to high material quality in GaAs grown directly on Si that can be used for the production of III-V/Si optoelectronic devices.

摘要

在硅衬底上直接外延生长高质量的III-V族半导体是一个具有挑战性的材料科学问题,在光电器件(如太阳能电池和片上激光器)中有许多应用。我们报道了通过金属有机气相外延在纳米图案化的V型槽硅衬底上直接生长的GaAs太阳能电池中位错密度的降低。从V型槽硅上的GaP模板开始,通过对GaAs进行热循环退火,然后生长InGaAs位错过滤层,我们在GaAs中实现了3×10⁶ cm⁻²的低位错密度(TDD)。这种方法无需使用变质缓冲层即可直接在硅上集成低位错密度的GaAs。我们使用这些低位错密度的GaAs/V型槽硅模板生长了GaAs双异质结构,通过时间分辨光致发光测量,其少数载流子寿命为5.7 ns,该值与效率超过20%的GaAs太阳能电池相关的材料质量一致。然而,在这些低位错密度衬底上生长的前结GaAs太阳能电池在没有抗反射涂层的情况下,转换效率仅为6.6%。对该电池进行的电子通道对比度成像测量表明,在AlInP/GaInP窗口层与GaAs吸收层之间以及GaAs吸收层与GaInP背表面场(BSF)之间的界面处存在高密度的失配位错,这可能导致高表面复合速度,从而性能不佳。我们表明,通过采用基于AlGaAs的窗口层和BSF,可以减少(在BSF的情况下可消除)这些位错。与GaInP相比,AlGaAs具有与GaAs更相似的位错滑移特性,导致层间位错滑移更均匀。AlGaAs钝化提高了器件的外部量子效率和开路电压,但在没有抗反射涂层的情况下,器件的整体性能仍然较低,效率为7.7%,这可能是由于器件中出现了裂纹。这项工作展示了一种在直接生长在硅上且可用于生产III-V/Si光电器件的GaAs中实现高材料质量的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/612a/11783511/32f2a092c562/am4c18928_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验