Suppr超能文献

使用监督式和非监督式机器学习预测光合作用系统 II 放氧复合物中锰离子的氧化态。

Predicting the oxidation states of Mn ions in the oxygen-evolving complex of photosystem II using supervised and unsupervised machine learning.

机构信息

Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG, Groningen, The Netherlands.

Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.

出版信息

Photosynth Res. 2023 Apr;156(1):89-100. doi: 10.1007/s11120-022-00941-8. Epub 2022 Jul 27.

Abstract

Serial Femtosecond Crystallography at the X-ray Free Electron Laser (XFEL) sources enabled the imaging of the catalytic intermediates of the oxygen evolution reaction of Photosystem II (PSII). However, due to the incoherent transition of the S-states, the resolved structures are a convolution from different catalytic states. Here, we train Decision Tree Classifier and K-means clustering models on Mn compounds obtained from the Cambridge Crystallographic Database to predict the S-state of the X-ray, XFEL, and CryoEM structures by predicting the Mn's oxidation states in the oxygen-evolving complex. The model agrees mostly with the XFEL structures in the dark S state. However, significant discrepancies are observed for the excited XFEL states (S, S and S) and the dark states of the X-ray and CryoEM structures. Furthermore, there is a mismatch between the predicted S-states within the two monomers of the same dimer, mainly in the excited states. We validated our model against other metalloenzymes, the valence bond model and the Mn spin densities calculated using density functional theory for two of the mismatched predictions of PSII. The model suggests designing a more optimized sample delivery and illumiation systems are crucial to precisely resolve the geometry of the advanced S-states to overcome the noncoherent S-state transition. In addition, significant radiation damage is observed in X-ray and CryoEM structures, particularly at the dangler Mn center (Mn4). Our model represents a valuable tool for investigating the electronic structure of the catalytic metal cluster of PSII to understand the water splitting mechanism.

摘要

在 X 射线自由电子激光(XFEL)源上进行的连续飞秒晶体学实验能够对光合作用 II(PSII)的氧析出反应的催化中间产物进行成像。然而,由于 S 态的非相干跃迁,解析出的结构是来自不同催化态的卷积。在这里,我们通过预测产氧复合物中锰的氧化态,在剑桥晶体学数据库中获得的锰化合物上训练决策树分类器和 K-均值聚类模型,以预测 X 射线、XFEL 和 CryoEM 结构中的 S 态。该模型与黑暗 S 态的 XFEL 结构大多一致。然而,在激发态的 XFEL 结构(S 1、S 2 和 S 3)和 X 射线和 CryoEM 结构的黑暗状态下,观察到显著差异。此外,在同一二聚体的两个单体中,预测的 S 态之间存在不匹配,主要在激发态。我们针对其他金属酶、价键模型和使用密度泛函理论计算的两个 PSII 不匹配预测的锰自旋密度对我们的模型进行了验证。该模型表明,设计更优化的样品输送和照明系统对于精确解析先进 S 态的几何形状以克服非相干 S 态跃迁至关重要。此外,在 X 射线和 CryoEM 结构中观察到明显的辐射损伤,特别是在悬垂锰中心(Mn4)。我们的模型代表了一种研究 PSII 催化金属簇电子结构以理解水分解机制的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/822a/10070209/86b8b6530859/11120_2022_941_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验