Suppr超能文献

利用机器学习对常规超声心动图测量结果进行心脏淀粉样变性的检测。

Detection of cardiac amyloidosis using machine learning on routine echocardiographic measurements.

作者信息

Chang Rachel Si-Wen, Chiu I-Min, Tacon Phillip, Abiragi Michael, Cao Louie, Hong Gloria, Le Jonathan, Zou James, Daluwatte Chathuri, Ricchiuto Piero, Ouyang David

机构信息

UCSF, San Francisco, California, USA.

Cedars-Sinai Medical Center, Los Angeles, California, USA.

出版信息

Open Heart. 2024 Dec 18;11(2):e002884. doi: 10.1136/openhrt-2024-002884.

Abstract

BACKGROUND

Cardiac amyloidosis (CA) is an underdiagnosed, progressive and lethal disease. Machine learning applied to common measurements derived from routine echocardiogram studies can inform suspicion of CA.

OBJECTIVES

Our objectives were to test a random forest (RF) model in detecting CA.

METHODS

We used 3603 echocardiogram studies from 636 patients at Cedars-Sinai Medical Center to train an RF model to predict CA from echocardiographic parameters. 231 patients with CA were compared with 405 control patients with negative pyrophosphate scans or clinical diagnosis of hypertrophic cardiomyopathy. 19 common echocardiographic measurements from echocardiogram reports were used as input into the RF model. Data was split by patient into a training data set of 2882 studies from 486 patients and a test data set of 721 studies from 150 patients. The performance of the model was evaluated by area under the receiver operative curve (AUC), sensitivity, specificity and positive predictive value (PPV) on the test data set.

RESULTS

The RF model identified CA with an AUC of 0.84, sensitivity of 0.82, specificity of 0.73 and PPV of 0.76. Some echocardiographic measurements had high missingness, suggesting gaps in measurement in routine clinical practice. Features that were large contributors to the model included mitral A-wave velocity, global longitudinal strain (GLS), left ventricle posterior wall diameter end diastolic (LVPWd) and left atrial area.

CONCLUSION

Machine learning on echocardiographic parameters can detect patients with CA with accuracy. Our model identified several features that were major contributors towards identifying CA including GLS, mitral A peak velocity and LVPWd. Further study is needed to evaluate its external validity and application in clinical settings.

摘要

背景

心脏淀粉样变性(CA)是一种诊断不足、进行性且致命的疾病。将机器学习应用于常规超声心动图研究得出的常见测量值,有助于提示对CA的怀疑。

目的

我们的目的是测试一种随机森林(RF)模型在检测CA方面的效果。

方法

我们使用了来自雪松西奈医疗中心636例患者的3603份超声心动图研究数据,训练一个RF模型,以便根据超声心动图参数预测CA。将231例CA患者与405例焦磷酸盐扫描阴性或临床诊断为肥厚型心肌病的对照患者进行比较。超声心动图报告中的19项常见超声心动图测量值被用作RF模型的输入。数据按患者分为来自486例患者的2882份研究的训练数据集和来自150例患者的721份研究的测试数据集。通过测试数据集上的受试者操作曲线下面积(AUC)、敏感性、特异性和阳性预测值(PPV)来评估模型的性能。

结果

RF模型识别CA的AUC为0.84,敏感性为0.82,特异性为0.73,PPV为0.76。一些超声心动图测量值的缺失率很高,这表明在常规临床实践中测量存在差距。对模型贡献较大的特征包括二尖瓣A波速度、整体纵向应变(GLS)、左心室后壁舒张末期直径(LVPWd)和左心房面积。

结论

基于超声心动图参数的机器学习能够准确检测出CA患者。我们的模型识别出了几个对识别CA有重要贡献的特征,包括GLS、二尖瓣A峰速度和LVPWd。需要进一步研究以评估其外部有效性及其在临床环境中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a2/11667434/8a5bf9907ebf/openhrt-11-2-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验