Suppr超能文献

利用DigNet从单细胞RNA测序数据中基于扩散生成基因调控网络。

Diffusion-based generation of gene regulatory networks from scRNA-seq data with DigNet.

作者信息

Wang Chuanyuan, Liu Zhi-Ping

机构信息

Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China.

Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China

出版信息

Genome Res. 2025 Feb 14;35(2):340-354. doi: 10.1101/gr.279551.124.

Abstract

A gene regulatory network (GRN) intricately encodes the interconnectedness of identities and functionalities of genes within cells, ultimately shaping cellular specificity. Despite decades of endeavors, reverse engineering of GRNs from gene expression profiling data remains a profound challenge, particularly when it comes to reconstructing cell-specific GRNs that are tailored to precise cellular and genetic contexts. Here, we propose a discrete diffusion generation model, called DigNet, capable of generating corresponding GRNs from high-throughput single-cell RNA sequencing (scRNA-seq) data. DigNet embeds the network generation process into a multistep recovery procedure with Markov properties. Each intermediate step has a specific model to recover a portion of the gene regulatory architectures. It thus can ensure compatibility between global network structures and regulatory modules through the unique multistep diffusion procedure. Furthermore, through iMetacell integration and non-Euclidean discrete space modeling, DigNet is robust to the presence of noise in scRNA-seq data and the sparsity of GRNs. Benchmark evaluation results against more than a dozen state-of-the-art network inference methods demonstrate that DigNet achieves superior performance across various single-cell GRN reconstruction experiments. Furthermore, DigNet provides unique insights into the immune response in breast cancer, derived from differential gene regulation identified in T cells. As an open-source software, DigNet offers a powerful and effective tool for generating cell-specific GRNs from scRNA-seq data.

摘要

基因调控网络(GRN)以复杂的方式编码细胞内基因身份和功能的相互联系,最终塑造细胞特异性。尽管经过数十年的努力,但从基因表达谱数据逆向工程GRN仍然是一项艰巨的挑战,特别是在重建针对精确细胞和遗传背景量身定制的细胞特异性GRN时。在此,我们提出一种离散扩散生成模型,称为DigNet,它能够从高通量单细胞RNA测序(scRNA-seq)数据生成相应的GRN。DigNet将网络生成过程嵌入到具有马尔可夫性质的多步恢复过程中。每个中间步骤都有一个特定的模型来恢复一部分基因调控架构。因此,它可以通过独特的多步扩散过程确保全局网络结构与调控模块之间的兼容性。此外,通过iMetacell整合和非欧几里得离散空间建模,DigNet对scRNA-seq数据中的噪声和GRN的稀疏性具有鲁棒性。针对十多种先进网络推理方法的基准评估结果表明,DigNet在各种单细胞GRN重建实验中均取得了卓越的性能。此外,DigNet从T细胞中鉴定出的差异基因调控中,为乳腺癌的免疫反应提供了独特的见解。作为一款开源软件,DigNet为从scRNA-seq数据生成细胞特异性GRN提供了一个强大而有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee7/11874984/e23f34577f8a/340f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验