Suppr超能文献

基于图自动编码器模型从单细胞转录组数据推断基因调控网络。

Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model.

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.

出版信息

PLoS Genet. 2023 Sep 13;19(9):e1010942. doi: 10.1371/journal.pgen.1010942. eCollection 2023 Sep.

Abstract

The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.

摘要

细胞的基因调控结构不仅涉及两个基因之间的调控关系,还涉及多个基因的协同关联。然而,大多数单细胞基因调控网络推断方法仅关注并推断对基因的调控关系,而忽略了全局调控结构,这对于识别复杂生物系统中的调控至关重要。在这里,我们提出了一种基于图的深度学习模型,用于从单细胞 RNA-seq 数据中推断基因间的调控网络(DeepRIG)。为了学习全局调控结构,DeepRIG 通过将数据中的基因表达转化为共表达模式来构建先验调控图。然后,它利用图自动编码器模型将图中包含的全局调控信息嵌入到基因潜在表示中,并重构基因调控网络。广泛的基准测试结果表明,DeepRIG 可以准确地重建基因调控网络,并在多个模拟网络和真实细胞调控网络上优于现有方法。此外,我们将 DeepRIG 应用于人类外周血单核细胞和三阴性乳腺癌的样本中,并表明 DeepRIG 可以提供准确的细胞类型特异性基因调控网络推断,并识别进展和抑制的新调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a950/10519590/b47370c0b13d/pgen.1010942.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验