Suppr超能文献

利用人工智能培育观赏植物。

Utilising artificial intelligence for cultivating decorative plants.

作者信息

Salybekova Nurdana, Issayev Gani, Serzhanova Aikerim, Mikhailov Valery

机构信息

Department of Biology, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan.

Department of System Analysis and Information Technologies, Kazan Privolzhsky Federal University, Kazan, Russian Federation.

出版信息

Bot Stud. 2024 Dec 19;65(1):39. doi: 10.1186/s40529-024-00445-9.

Abstract

BACKGROUND

The research aims to assess the effectiveness of artificial intelligence models in predicting the risk level in tulip greenhouses using different varieties. The study was conducted in 2022 in the Almaty region, Panfilov village.

RESULTS

Two groups of 10 greenhouses each (area 200 m2) were compared: the control group used standard monitoring methods, while the experimental group employed AI-based monitoring. We applied ANOVA, regression analysis, Bootstrap, and correlation analysis to evaluate the impact of factors on the risk level. The results demonstrate a statistically significant reduction in the risk level in the experimental group, where artificial intelligence models were employed, especially the recurrent neural network "Expert-Pro." A comparison of different tulip varieties revealed differences in their susceptibility to risks. The results provide an opportunity for more effective risk management in greenhouse cultivation.

CONCLUSIONS

The high accuracy and sensitivity exhibited by the "Expert-Pro" model underscore its potential to enhance the productivity and resilience of crops. The research findings justify the theoretical significance of applying artificial intelligence in agriculture and its practical applicability for improving risk management efficiency in greenhouse cultivation conditions.

摘要

背景

本研究旨在评估人工智能模型在预测不同品种郁金香温室风险水平方面的有效性。该研究于2022年在阿拉木图地区的潘菲洛夫村进行。

结果

比较了两组各10个温室(面积200平方米):对照组采用标准监测方法,而实验组采用基于人工智能的监测。我们应用方差分析、回归分析、自助法和相关分析来评估各因素对风险水平的影响。结果表明,在采用人工智能模型的实验组中,风险水平有统计学意义的降低,尤其是循环神经网络“专家-Pro”。不同郁金香品种的比较显示出它们对风险的易感性存在差异。研究结果为温室种植中更有效的风险管理提供了契机。

结论

“专家-Pro”模型表现出的高精度和敏感性凸显了其提高作物生产力和抗逆性的潜力。研究结果证明了人工智能在农业中的理论意义及其在提高温室种植条件下风险管理效率方面的实际适用性。

相似文献

1
Utilising artificial intelligence for cultivating decorative plants.
Bot Stud. 2024 Dec 19;65(1):39. doi: 10.1186/s40529-024-00445-9.
3
Improving crop production using an agro-deep learning framework in precision agriculture.
BMC Bioinformatics. 2024 Nov 1;25(1):341. doi: 10.1186/s12859-024-05970-9.
5
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
8
Artificial intelligence systems in dental shade-matching: A systematic review.
J Prosthodont. 2024 Jul;33(6):519-532. doi: 10.1111/jopr.13805. Epub 2023 Dec 6.
10
A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach.
Environ Pollut. 2023 May 1;324:121363. doi: 10.1016/j.envpol.2023.121363. Epub 2023 Feb 28.

本文引用的文献

3
Detection of Small-Sized Insects in Sticky Trapping Images Using Spectral Residual Model and Machine Learning.
Front Plant Sci. 2022 Jun 28;13:915543. doi: 10.3389/fpls.2022.915543. eCollection 2022.
4
Towards intelligent and integrated pest management through an AIoT-based monitoring system.
Pest Manag Sci. 2022 Oct;78(10):4288-4302. doi: 10.1002/ps.7048. Epub 2022 Jul 8.
5
Forecasting the seasonal dynamics of Trichoplusia ni (Lep.: Noctuidae) on three Brassica crops through neural networks.
Int J Biometeorol. 2022 May;66(5):875-882. doi: 10.1007/s00484-022-02244-y. Epub 2022 Jan 19.
6
Applications of deep-learning approaches in horticultural research: a review.
Hortic Res. 2021 Jun 1;8(1):123. doi: 10.1038/s41438-021-00560-9.
7
Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps.
Sci Rep. 2021 May 17;11(1):10419. doi: 10.1038/s41598-021-89930-w.
8
Chemical host-seeking cues of entomopathogenic nematodes.
Curr Opin Insect Sci. 2021 Apr;44:72-81. doi: 10.1016/j.cois.2021.03.011. Epub 2021 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验