Jiao Wu, Wang Mangmang, Guan Yijian, Guo Wei, Zhang Chang, Wei Yuanchun, Zhao Zhenwei, Ma Hongyu, Wang Longfei, Jiang Xinyu, Ye Wenxue, Cao Dong, Song Qingxin
State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China.
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
Genome Biol. 2024 Dec 18;25(1):313. doi: 10.1186/s13059-024-03454-w.
Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops.
Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean. We find TF binding sites (TFBSs) exhibit elevated chromatin accessibility and contain more rare alleles than other genomic regions. Intriguingly, the methylation variations at TFBSs partially contribute to expression bias among whole genome duplication paralogs. Furthermore, we construct a soybean gene regulatory network (SoyGRN) by integrating TF-target interactions with diverse datasets encompassing gene expression, TFBS motifs, chromatin accessibility, and evolutionarily conserved regulation. SoyGRN comprises 2.44 million genome-wide interactions among 3188 TFs and 51,665 target genes. We successfully identify key TFs governing seed coat color and oil content and prioritize candidate genes within quantitative trait loci associated with various agronomic traits using SoyGRN. To accelerate utilization of SoyGRN, we develop an interactive webserver ( www.soytfbase.cn ) for soybean community to explore functional TFs involved in trait regulation.
Overall, our study unravels intricate landscape of TF-target interactions in soybean and provides a valuable resource for dissecting key regulators for control of agronomic traits to accelerate soybean improvement.
转录因子(TFs)结合调控基因组区域以协调靶基因的时空表达。对顺反组进行全面剖析对于阐明作物复杂农艺性状背后的转录网络至关重要。
在此,我们利用大豆中的DNA亲和纯化测序技术,为148个转录因子生成了一份全面的全基因组结合图谱。我们发现转录因子结合位点(TFBSs)表现出更高的染色质可及性,并且比其他基因组区域含有更多的稀有等位基因。有趣的是,TFBSs处的甲基化变异部分导致了全基因组复制旁系同源物之间的表达偏差。此外,我们通过整合TF-靶标相互作用与包括基因表达、TFBS基序、染色质可及性和进化保守调控在内的各种数据集,构建了一个大豆基因调控网络(SoyGRN)。SoyGRN包含3188个转录因子和51665个靶基因之间的244万个全基因组相互作用。我们成功鉴定了控制种皮颜色和油含量的关键转录因子,并使用SoyGRN对与各种农艺性状相关的数量性状位点内的候选基因进行了优先级排序。为了加速SoyGRN的利用,我们为大豆研究群体开发了一个交互式网络服务器(www.soytfbase.cn),以探索参与性状调控的功能性转录因子。
总体而言,我们的研究揭示了大豆中TF-靶标相互作用的复杂格局,并为剖析控制农艺性状的关键调控因子以加速大豆改良提供了宝贵资源。