Suppr超能文献

Piikun:用于物种界定度量空间分析与可视化的信息论工具包。

Piikun: an information theoretic toolkit for analysis and visualization of species delimitation metric space.

作者信息

Sukumaran Jeet, Meila Marina

机构信息

Biology, San Diego State University, San Diego, CA, USA.

Statistics, University of Washington, Seattle, 10587, WA, USA.

出版信息

BMC Bioinformatics. 2024 Dec 18;25(1):385. doi: 10.1186/s12859-024-05997-y.

Abstract

BACKGROUND

Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions.

RESULTS

Piikun is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions.

CONCLUSIONS

Piikun is available under the MIT license from its public repository ( https://github.com/jeetsukumaran/piikun ), and can be installed locally using the Python package manager 'pip'.

摘要

背景

现有的用于比较物种界定模型的软件,既没有提供物种界定模型之间的(真正的)度量标准或距离函数,也没有提供一种方法来根据沿着划分格的相对聚类差异比较这些模型。

结果

Piikun是一个用于在信息论框架中分析和可视化物种界定模型的Python包,除了诸如熵和互信息[1]等经典信息度量外,还提供了信息变异(VI)准则[2]的计算,这是一种与划分格对齐的物种界定模型的真正度量标准或距离函数。

结论

Piikun可根据MIT许可从其公共存储库(https://github.com/jeetsukumaran/piikun)获取,并可使用Python包管理器“pip”在本地安装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4580/11657818/00e247d86db5/12859_2024_5997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验