Suppr超能文献

基于人工智能的围产期超声筛查图像质量控制的成本效益分析。

Cost-effectiveness analysis of AI-based image quality control for perinatal ultrasound screening.

作者信息

Tan Yihan, Peng Yulin, Guo Liangyu, Liu Dongmei, Luo Yingchun

机构信息

Department of Ultrasonography, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Changsha, 410008, Hunan, China.

NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410133, Hunan, China.

出版信息

BMC Med Educ. 2024 Dec 18;24(1):1437. doi: 10.1186/s12909-024-06477-w.

Abstract

PURPOSE

This study aimed to compare the cost-effectiveness of AI-based approaches with manual approaches in ultrasound image quality control (QC).

METHODS

Eligible ultrasonographers and pregnant volunteers were prospectively recruited from the Hunan Maternal and Child Health Hospital in May 2023. The ultrasonographers were randomly and evenly assigned to either the AI or Manual QC groups with baseline scores determined in June-July. From August to October, these groups received real-time AI or post-scan manual QC with post-interventional scores recorded monthly. We applied the repeated measures analysis of variance to analyze the between-subject and within-subject effectiveness and time trends in effectiveness (QC score improvement) assessment. An extra 50 pregnant volunteers underwent real-time manual QC, with their screening images utilized for post-scan AI and manual QC. The time cost of real-time AI QC was zero since it only required trainees' involvement. We used Friedman's M and Quade tests to compare multiple independent medians in cost assessment.

RESULTS

This study recruited 14 ultrasonographers, equally divided into the AI and Manual QC groups. No significant difference existed between the groups concerning age, service year in perinatal diagnosis, male proportion, and QC frequency. The simple effect of the group revealed that the AI QC method outperformed the Manual QC method at least once (F = 13.113, P = 0.004, η = 0.522). The simple effect of the month in the AI QC groups indicated an improvement in the mean QC scores (F = 9.827, P = 0.003, η = 0.747) while that of manual QC groups suggested no improvement (F = 0.144, P = 0.931, η = 0.041). Baseline scores were equal in June-July (F = 0.031, P = 0.864, η = 0.003). However, the AI QC group surpassed the Manual QC group in August (F = 14.579, P = 0.002, η = 0.549), September (F = 28.590, P < 0.001, η = 0.704), and October (F = 35.411, P < 0.001, η = 0.747). Within the Manual QC group, no significant differences were found in scores between June-July and August, September, or October (all P values of 1.000, nominal significance level of 0.0083). In contrast, the AI QC group showed significantly higher scores in August, September, and October compared to June-July (all P values of 0.001, nominal significance level of 0.0083). The time costs of real-time AI QC, post-scan AI QC, post-scan manual QC, and real-time manual QC were 0 s, 13.76 s (interquartile range, IQR: 4.79-46.79 s), 1239.50 s (IQR: 1141.00-1311.25 s), and 1541.00 s (IQR: 1453.50-1635.25 s), with significant differences in both overall and multiple comparisons.

CONCLUSIONS

The AI QC method, more cost-effective than the manual method, shows great potential for application in image QC scenarios. The AI QC can enhance operators' skills in perinatal ultrasound screening, while the manual method can only maintain the existing level.

摘要

目的

本研究旨在比较基于人工智能的方法与人工方法在超声图像质量控制(QC)中的成本效益。

方法

2023年5月从湖南省妇幼保健院前瞻性招募符合条件的超声检查人员和孕妇志愿者。超声检查人员被随机且平均分配到人工智能或人工质量控制组,并在6月至7月确定基线分数。从8月到10月,这些组接受实时人工智能或扫描后人工质量控制,并每月记录干预后的分数。我们应用重复测量方差分析来分析受试者间和受试者内的有效性以及有效性(质量控制分数改善)评估中的时间趋势。另外50名孕妇志愿者接受实时人工质量控制,其筛查图像用于扫描后人工智能和人工质量控制。实时人工智能质量控制的时间成本为零,因为它只需要受训人员参与。我们使用弗里德曼M检验和奎德检验来比较成本评估中的多个独立中位数。

结果

本研究招募了14名超声检查人员,平均分为人工智能和人工质量控制组。两组在年龄、围产期诊断服务年限、男性比例和质量控制频率方面无显著差异。组的简单效应表明,人工智能质量控制方法至少有一次优于人工质量控制方法(F = 13.113,P = 0.004,η = 0.522)。人工智能质量控制组中月份的简单效应表明平均质量控制分数有所提高(F = 9.827,P = 0.003,η = 0.747),而人工质量控制组则无改善(F = 0.144,P = 0.931,η = 0.041)。6月至7月的基线分数相等(F = 0.031,P = 0.864,η = 0.003)。然而,人工智能质量控制组在8月(F = 14.579,P = 0.002,η = 0.549)、9月(F = 28.590,P < 0.001,η = 0.704)和10月(F = 35.411,P < 0.001,η = 0.747)超过了人工质量控制组。在人工质量控制组中,6月至7月与8月、9月或10月的分数之间未发现显著差异(所有P值均为1.000,名义显著性水平为0.0083)。相比之下,人工智能质量控制组在8月、9月和10月的分数明显高于6月至7月(所有P值均为0.001,名义显著性水平为0.0083)。实时人工智能质量控制、扫描后人工智能质量控制、扫描后人工质量控制和实时人工质量控制的时间成本分别为0秒、13.76秒(四分位间距,IQR:4.79 - 46.79秒)、1239.50秒(IQR:1141.00 - 1311.25秒)和1541.00秒(IQR:1453.50 - 1635.25秒),在总体和多重比较中均有显著差异。

结论

人工智能质量控制方法比人工方法更具成本效益,在图像质量控制场景中具有巨大的应用潜力。人工智能质量控制可以提高操作人员在围产期超声筛查中的技能,而人工方法只能维持现有水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57d/11654377/ed0c6418e6e4/12909_2024_6477_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验