Suppr超能文献

利用对比学习进行胎儿超声成像中的标准平面分类。

On the use of contrastive learning for standard-plane classification in fetal ultrasound imaging.

机构信息

Department of Law, Università degli Studi di Macerata, Macerata, Italy.

Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.

出版信息

Comput Biol Med. 2024 May;174:108430. doi: 10.1016/j.compbiomed.2024.108430. Epub 2024 Apr 9.

Abstract

BACKGROUND

To investigate the effectiveness of contrastive learning, in particular SimClr, in reducing the need for large annotated ultrasound (US) image datasets for fetal standard plane identification.

METHODS

We explore SimClr advantage in the cases of both low and high inter-class variability, considering at the same time how classification performance varies according to different amounts of labels used. This evaluation is performed by exploiting contrastive learning through different training strategies. We apply both quantitative and qualitative analyses, using standard metrics (F1-score, sensitivity, and precision), Class Activation Mapping (CAM), and t-Distributed Stochastic Neighbor Embedding (t-SNE).

RESULTS

When dealing with high inter-class variability classification tasks, contrastive learning does not bring a significant advantage; whereas it results to be relevant for low inter-class variability classification, specifically when initialized with ImageNet weights.

CONCLUSIONS

Contrastive learning approaches are typically used when a large number of unlabeled data is available, which is not representative of US datasets. We proved that SimClr either as pre-training with backbone initialized via ImageNet weights or used in an end-to-end dual-task may impact positively the performance over standard transfer learning approaches, under a scenario in which the dataset is small and characterized by low inter-class variability.

摘要

背景

为了研究对比学习,特别是 SimClr,在减少用于胎儿标准平面识别的大型标注超声 (US) 图像数据集的需求方面的有效性。

方法

我们探讨了 SimClr 在低类间可变性和高类间可变性情况下的优势,同时考虑了根据使用的不同标签数量分类性能的变化。通过利用不同的训练策略进行对比学习,我们进行了定量和定性分析,使用了标准指标(F1 分数、灵敏度和精度)、类激活映射 (CAM) 和 t 分布随机近邻嵌入 (t-SNE)。

结果

在处理高类间可变性分类任务时,对比学习没有带来显著优势;而对于低类间可变性分类,特别是在使用 ImageNet 权重初始化时,它具有相关性。

结论

对比学习方法通常在有大量未标记数据可用时使用,而这些数据与 US 数据集并不典型。我们证明了 SimClr 无论是通过使用 ImageNet 权重初始化的骨干网络进行预训练,还是在端到端双任务中使用,都可能在数据集较小且类间可变性较低的情况下对标准迁移学习方法的性能产生积极影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验