文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可代谢合金簇组装纳米抑制剂以通过缓解缺氧和抑制细胞内程序性死亡配体1增强肿瘤放射治疗。

Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint.

作者信息

Ding Guanwen, Liu Shengnan, Yang Xiangshan, Lv Hongying, Jia Mengchao, Li Juan, Zhang Rui

机构信息

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Chang Chun, 130021, China.

China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.

出版信息

J Nanobiotechnology. 2024 Dec 19;22(1):774. doi: 10.1186/s12951-024-03057-4.


DOI:10.1186/s12951-024-03057-4
PMID:39696327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11657501/
Abstract

BACKGROUND: Cancer radiotherapy (RT) still has limited clinical success because of the obstacles including radioresistance of hypoxic tumors, high-dose X-ray-induced damage to adjacent healthy tissue, and DNA-damage repair by intracellular PD-L1 in tumor. RESULTS: Therefore, to overcome these obstacles multifunctional core-shell BMS@PtAu nanoparticles (NPs) are prepared using nanoprecipitation followed by electrostatic assembly. PtAu clusters are released from BMS@PtAu NPs to alleviate tumor hypoxia by catalyzing the decomposition of endogenous HO to generate O as well as by enhancing X-ray deposition at the tumor site, which thereby reduce the required X-ray dose. The released BMS-202 molecules simultaneously blockade PD-L1 on and in tumor cells, causing the activation of effector T cells and the inhibition of DNA-damage repair. Consequently, radiotherapy based on BMS@PtAu NPs enhance the expression of calreticulin on cancer cells, transposition of HMGB1 from the nucleus to the cytoplasm, generation of reactive oxygen species (ROS), DNA breakage and apoptosis of cancer cells in vitro. The tumor inhibition rate reached 92.5% under three cycles of 1-Gy X-ray irradiation in vivo. CONCLUSION: In conclusion, the therapeutic outcome supports the high-efficiency of radiotherapy based on BMS@PtAu NPs in hypoxic tumors expressing PD-L1.

摘要

背景:由于存在多种障碍,包括缺氧肿瘤的放射抗性、高剂量X射线对邻近健康组织的损伤以及肿瘤细胞内PD-L1介导的DNA损伤修复,癌症放射治疗(RT)的临床成功率仍然有限。 结果:因此,为克服这些障碍,采用纳米沉淀法结合静电组装制备了多功能核壳型BMS@PtAu纳米颗粒(NPs)。PtAu簇从BMS@PtAu NPs中释放出来,通过催化内源性H₂O₂分解产生O₂以及增强肿瘤部位的X射线沉积来缓解肿瘤缺氧,从而降低所需的X射线剂量。释放出的BMS-202分子同时阻断肿瘤细胞表面和内部的PD-L1,激活效应T细胞并抑制DNA损伤修复。因此,基于BMS@PtAu NPs的放射治疗可增强癌细胞中钙网蛋白的表达、促使高迁移率族蛋白B1(HMGB1)从细胞核转位至细胞质、产生活性氧(ROS)、导致DNA断裂并诱导癌细胞在体外凋亡。在体内1 Gy X射线照射三个周期后,肿瘤抑制率达到92.5%。 结论:总之,治疗结果支持基于BMS@PtAu NPs的放射治疗对表达PD-L1的缺氧肿瘤具有高效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/617ccb616c11/12951_2024_3057_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/4cfe60a2970d/12951_2024_3057_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/fe23e2c889a7/12951_2024_3057_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/874e3a654665/12951_2024_3057_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/5daf4645cb8b/12951_2024_3057_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/fc51c565542d/12951_2024_3057_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/9a91729c1773/12951_2024_3057_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/0afe550dc662/12951_2024_3057_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/617ccb616c11/12951_2024_3057_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/4cfe60a2970d/12951_2024_3057_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/fe23e2c889a7/12951_2024_3057_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/874e3a654665/12951_2024_3057_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/5daf4645cb8b/12951_2024_3057_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/fc51c565542d/12951_2024_3057_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/9a91729c1773/12951_2024_3057_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/0afe550dc662/12951_2024_3057_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9d/11657501/617ccb616c11/12951_2024_3057_Fig7_HTML.jpg

相似文献

[1]
Metabolizable alloy clusters assemble nanoinhibitor for enhanced radiotherapy of tumor by hypoxia alleviation and intracellular PD-L1 restraint.

J Nanobiotechnology. 2024-12-19

[2]
Assembling Au clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor.

J Nanobiotechnology. 2024-1-5

[3]
Immune Checkpoint Blockade Mediated by a Small-Molecule Nanoinhibitor Targeting the PD-1/PD-L1 Pathway Synergizes with Photodynamic Therapy to Elicit Antitumor Immunity and Antimetastatic Effects on Breast Cancer.

Small. 2019-11-8

[4]
DTX@VTX NPs synergy PD-L1 immune checkpoint nanoinhibitor to reshape immunosuppressive tumor microenvironment for enhancing chemo-immunotherapy.

J Mater Chem B. 2021-9-22

[5]
Overcoming radiation-induced PD-L1 and COX-2 upregulation by nitric oxide gas nanogenerator to sensitize radiotherapy of lung cancer.

Biomaterials. 2025-10

[6]
Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus.

Drug Deliv Transl Res. 2025-1

[7]
A Multifunctional Biomimetic Nanoplatform for Relieving Hypoxia to Enhance Chemotherapy and Inhibit the PD-1/PD-L1 Axis.

Small. 2018-6-7

[8]
Bifunctional cascaded single-atom nanozymes for enhanced photodynamic immunotherapy through dual-depressing PD-L1 and regulating hypoxia.

Biomaterials. 2025-6

[9]
Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate antitumor immunity in combined radioimmunotherapy and photothermal therapy.

J Mater Chem B. 2024-12-4

[10]
NIR-II Driven Plasmon-Enhanced Catalysis for a Timely Supply of Oxygen to Overcome Hypoxia-Induced Radiotherapy Tolerance.

Angew Chem Int Ed Engl. 2019-9-11

引用本文的文献

[1]
Golden insights for exploring cancer: delivery, from genes to the human body using bimetallic Au/Ag nanostructures.

Discov Oncol. 2025-5-25

本文引用的文献

[1]
Selenium-Doped Nanoheterojunctions for Highly Efficient Cancer Radiosensitization.

Adv Sci (Weinh). 2024-8

[2]
Enhancing X-Ray Sensitization with Multifunctional Nanoparticles.

Small. 2024-8

[3]
X-Ray-Triggered CO-Release from Gold Nanocluster: All-in-One Nanoplatforms for Cancer Targeted Gas and Radio Synergistic Therapy.

Adv Mater. 2024-6

[4]
Reactive Oxygen Species Amplifier for Apoptosis-Ferroptosis Mediated High-Efficiency Radiosensitization of Tumors.

ACS Nano. 2024-4-9

[5]
Assembling Au clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor.

J Nanobiotechnology. 2024-1-5

[6]
Hafnium (Hf)-Chelating Porphyrin-Decorated Gold Nanosensitizers for Enhanced Radio-Radiodynamic Therapy of Colon Carcinoma.

ACS Nano. 2023-12-26

[7]
Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy.

Small Methods. 2024-1

[8]
Multifunctional Au@AgBiS Nanoparticles as High-Efficiency Radiosensitizers to Induce Pyroptosis for Cancer Radioimmunotherapy.

Adv Sci (Weinh). 2023-10

[9]
Metabolic Intervention Liposome Boosted Lung Cancer Radio-Immunotherapy via Hypoxia Amelioration and PD-L1 Restraint.

Adv Sci (Weinh). 2023-6

[10]
Water-Soluble Au Clusters with Single-Crystal Structure for Mitochondria-Targeting Radioimmunotherapy.

ACS Nano. 2023-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索