Suppr超能文献

脑脊液流动中微小结构和平均速度场影响的数值研究

Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

作者信息

Wang Ziyu, Majidi Mohammad, Li Chenji, Ardekani Arezoo

机构信息

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.

出版信息

Fluids Barriers CNS. 2024 Dec 18;21(1):102. doi: 10.1186/s12987-024-00604-x.

Abstract

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.

摘要

优化鞘内给药的重要性体现在其改善患者健康结局的潜力上。以往基于个体或小群体的计算研究结果,由于存在显著的几何变异性,可能不适用于更广泛的人群。我们的研究旨在通过基于个体脊髓蛛网膜下腔的几何结构评估其循环平均拉格朗日速度场来解决这一问题。劳伦斯等人(《流体力学杂志》861:679 - 720,2019)已经表明,诸如稳态流动和斯托克斯漂移等主要物理机制是促进椎管内物质运输的关键。在本研究中,我们对脊髓蛛网膜下腔内的脉动性脑脊液流场和拉格朗日速度场进行了计算建模。我们的研究结果突出了诸如神经根、齿状韧带和波浪状蛛网膜等微小结构在调节脊髓蛛网膜下腔内的流动和运输动力学方面的重要作用。我们发现这些结构可以增强液体运输。我们还强调了在脊髓蛛网膜下腔内物质运输的计算研究中进行粒子追踪的必要性。我们的研究阐明了椎管几何结构与运输动力学之间的关系,其特征是在几何结构较宽区域有一个较大的向上循环平均拉格朗日速度区,而在较窄区域和靠近管壁的区域则是向下的区域。这突出了通过利用椎管内的自然流动动力学来优化鞘内注射方案的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验