Suppr超能文献

微波驱动的聚烯烃液态金属降解

Microwave-Powered Liquid Metal Degradation of Polyolefins.

作者信息

Gao Jianye, Zhao Jun, Xing Zerong, Guo Minghui, Xie Haijiao, Ma Wangjing, Liu Jing

机构信息

School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.

Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Adv Mater. 2025 Feb;37(6):e2412539. doi: 10.1002/adma.202412539. Epub 2024 Dec 18.

Abstract

Upcycling waste plastics is highly promising to tackle global white pollution while achieving sustainable development. However, prevailing approaches often encounter challenges in scalable engineering practices due to either insufficient plastic upcycling capability or arduousness in the separation, recovery, and purification of catalysts, which inevitably augments the cost of plastic upcycling. Here, the microwave-powered liquid metal synergetic depolymerization is presented to facilitate low-cost plastic upcycling. By leveraging the fluidity of liquid metals and their exceptional chemical-bond activation ability under microwave field, this method efficiently converts various polyolefins into narrowband hydrocarbon oil (Oil yield: 81 wt.% for polypropylene (PP), 85.9 wt.% for polyethylene (PE)) and high-value olefin monomers (C selectivity: 50% for PE, 65.3% for PP) over 30 successive cycles, resulting in a high turnover frequency of 2.83 kg mL . These captivating advantages offered by electromagnetically-powered liquid metals are also supported by their self-separation features, thereby paving the way for large-scale engineering solutions in waste plastic upcycling.

摘要

升级回收废塑料在解决全球白色污染并实现可持续发展方面极具前景。然而,由于塑料升级回收能力不足,或催化剂分离、回收及纯化过程艰巨,当前的方法在可扩展工程实践中常面临挑战,这不可避免地增加了塑料升级回收的成本。在此,提出了微波驱动的液态金属协同解聚法以促进低成本的塑料升级回收。通过利用液态金属的流动性及其在微波场下出色的化学键活化能力,该方法能在30个连续循环中高效地将各种聚烯烃转化为窄馏分烃油(产油率:聚丙烯(PP)为81 wt.%,聚乙烯(PE)为85.9 wt.%)和高价值烯烃单体(碳选择性:PE为50%,PP为65.3%),实现了2.83 kg mL⁻¹的高周转频率。电磁驱动液态金属所具备的这些吸引人的优势还得益于其自分离特性,从而为废塑料升级回收的大规模工程解决方案铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验