Reihs Eva I, Stoegner Alexander, Vasconez Martínez Mateo G, Schreiner Markus M, Cezanne Melanie, Gruebl-Barabas Ruth, Rodriguez-Molina Bettina, Alphonsus Juergen, Hayer Silvia, Lass Richard, Gerner Iris, Jenner Florien, Holnthoner Wolfgang, Toegel Stefan, Ertl Peter, Kiener Hans P, Windhager Reinhard, Rothbauer Mario
Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria.
Institute of Applied Synthetic Chemistry, Institute of Applied Synthetic Chemistry, CellChipGroup, Technische Universitaet Wien (TUW), Getreidemarkt, 9/163, Vienna, 1060, Austria.
Adv Healthc Mater. 2025 Sep;14(23):e2404799. doi: 10.1002/adhm.202404799. Epub 2025 Jun 29.
Current synovial models fail to capture human-relevant OA traits. This study develops a fully humanized, animal-free synovial membrane model, mimicking OA synovial structure and molecular profile. Protocols for rheumatoid synovial micromasses are adapted for 3D biochip cultures of OA synoviocytes using TISSEEL fibrin and ELAREM lysate. Cell activity, mRNA expression, and structural changes are evaluated under varying hydrogel stiffness and cytokine exposure, with results compared to human OA and animal (equine and murine) synovial tissues. The animal-free biochip protocols replicate synovial architecture successfully. Improved gene expression of reticular collagen III (COL3A1) is achieved with 50 mg mL fibrinogen and 1% hPL. A 50 pg mL TNF-α and IL-1β stimulus induced a pro-fibrotic phenotype (COL1A1, COL3A1) distinct from the inflammatory response triggered by ng/mL dosages (IL6, MMP1, MMP3, and MMP13, vs the pg/mL model). The clinical relevance of the patient-relevant OA synovial model is underscored by significant Yap1 overexpression, reflecting synovial hyperplasia from cell activation and inflammation. Yap1 distribution, as a biomarker (ctrl vs kOA tissue), is best replicated in the low-dose pg/ml-treated model. The tissue-mimetic biochips provide a human-relevant OA study platform offering patient-relevant molecular insights into the structure-function relationships of osteoarthritic synovial tissues while eliminating animal-derived materials.
目前的滑膜模型无法捕捉与人类相关的骨关节炎特征。本研究开发了一种完全人源化、无动物的滑膜模型,模拟骨关节炎滑膜结构和分子特征。类风湿性滑膜微团的实验方案适用于使用TISSEEL纤维蛋白和ELAREM裂解物对骨关节炎滑膜细胞进行3D生物芯片培养。在不同的水凝胶硬度和细胞因子暴露条件下评估细胞活性、mRNA表达和结构变化,并将结果与人类骨关节炎和动物(马和小鼠)滑膜组织进行比较。无动物生物芯片方案成功复制了滑膜结构。使用50mg/mL纤维蛋白原和1%人血小板裂解液可提高网状胶原III(COL3A1)的基因表达。50pg/mL的TNF-α和IL-1β刺激诱导了一种促纤维化表型(COL1A1、COL3A1),与ng/mL剂量引发的炎症反应(IL6、MMP1、MMP3和MMP13,与pg/mL模型相比)不同。患者相关的骨关节炎滑膜模型的临床相关性通过Yap1的显著过表达得到强调,这反映了细胞激活和炎症引起的滑膜增生。作为一种生物标志物(对照与膝关节骨关节炎组织),Yap1的分布在低剂量pg/ml处理的模型中复制得最好。这种模拟组织的生物芯片提供了一个与人类相关的骨关节炎研究平台,在消除动物源材料的同时,提供了与患者相关的分子见解,以了解骨关节炎滑膜组织的结构-功能关系。