Parrilla-Lahoz Silvia, Zambrano Marielis C, Pawlak Joel J, Venditti Richard A, Ramirez Reina Tomas, Odriozola Jose Antonio, Duyar Melis S
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK.
Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
iScience. 2024 Nov 19;27(12):111427. doi: 10.1016/j.isci.2024.111427. eCollection 2024 Dec 20.
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.28 million tons of microfibers per year) into the circular economy by catalytic upcycling to carbon nanomaterials. Herein, we show that cotton and polyester can be converted to filamentous solid carbon nanostructures using a Fe-Ni catalyst during HTC. Results revealed the conversion of microfibers into amorphous and graphitic carbon structures, including carbon nanotubes from a cotton/polyethylene terephthalate (PET) mixture. HTC at 200°C and 22 bar pressure produced graphitic carbon in all samples, demonstrating that mixed microfiber wastes can be valorized to provide potentially valuable carbon structures by modifying reaction parameters and catalyst formulation.
洗涤合成纺织品时脱落的微塑料纤维会直接排放到水体中,占排入水生环境的原生微塑料的35%。虽然过滤装置和相关规定正在研发中,但安全处置方法仍然缺失。在此,我们研究了催化水热碳化(HTC),通过催化升级循环将这种废弃物(每年28万吨微纤维)转化为碳纳米材料,从而将其纳入循环经济。在此,我们表明,在水热碳化过程中,使用铁镍催化剂可将棉花和聚酯转化为丝状固体碳纳米结构。结果显示,微纤维可转化为无定形和石墨碳结构,包括由棉/聚对苯二甲酸乙二酯(PET)混合物生成的碳纳米管。在200°C和22巴压力下进行水热碳化,所有样品均生成了石墨碳,这表明通过改变反应参数和催化剂配方,混合微纤维废料可转化为具有潜在价值的碳结构。