Suppr超能文献

将不等方差信号检测理论与健康信念模型相结合,以优化耳鸣患者的共同决策:第1部分——模型开发。

Combining unequal variance signal detection theory with the health belief model to optimize shared decision making in tinnitus patients: part 1-model development.

作者信息

Hoetink Alexander E, Kaldenbach Sarah, Lieftink Arnold, Versnel Huib, Stokroos Robert J

机构信息

Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands.

UMC Utrecht Brain Center, Utrecht, Netherlands.

出版信息

Front Neurosci. 2024 Dec 4;18:1451741. doi: 10.3389/fnins.2024.1451741. eCollection 2024.

Abstract

INTRODUCTION

The results from different Cochrane studies justify considerable professional equipoise concerning different treatment options for tinnitus. In case of professional equipoise, Shared Decision Making (SDM) is an indispensable tool for guiding patients to the intervention that best fits their needs. To improve SDM we developed a method to assess the accuracy and utility of decisions made by tinnitus patients when freely choosing between different treatment options during their patient journey. The different treatment options were audiological care and psychosocial counseling.

METHODS

We developed a statistical model by combining Signal Detection Theory (SDT) with the Health Belief Model (HBM). HBM states that perceived severity of an illness is strongly related to sick-role behavior. As proxies for perceived severity, we selected hearing loss and Tinnitus Handicap Inventory (THI) score at baseline. Next, we used these proxies as predictors in linear regression models based on SDT to determine the likelihood ratio of true positive decisions (choosing a treatment option and experiencing an improvement of more than 7 points in THI-score) and false positive decisions (choosing a treatment option and experiencing an improvement of less than 7 points in THI-score) for audiological care and psychosocial counseling, respectively. Data was gathered in a prospective cohort of 145 adults referred for tinnitus care to an outpatient audiology clinic in the Netherlands. The participants were asked to decide freely on uptake of audiological care (provision of hearing aids with or without a sound generator) and uptake of psychosocial counseling. Logistic regression with Bayesian inference was used to determine the cumulative distribution functions and the probability density functions of true positive decisions and false positive decisions as function of hearing loss and baseline THI-score for both treatment options, respectively. With the cumulative distribution functions, we determined the accuracy of the decisions. With the probability density functions we calculated the likelihood ratios of true positive decisions versus false positive decisions as function of hearing loss and baseline THI-score. These likelihood ratio functions allow assessment of the utility of the decisions by relating a decision criterion to perceived benefits and costs.

RESULTS

Baseline THI-score drives decisions about psychosocial counseling and hearing loss drives decisions about audiological care. Decisions about psychosocial counseling are more accurate than decisions about audiological care. Both decisions have a low accuracy (0.255 for audiological care and  - 0.429 for psychosocial counseling), however. For decisions about audiological care the unbiased decision criterion is 37 dB(HL), meaning that a lenient decision criterion (likelihood ratio < 1) is adopted by patients with a hearing loss below 37 dB and a strict criterion (likelihood ratio > 1) by patients with a hearing loss exceeding 37 dB. For psychosocial counseling uptake the decision criterion is always strict, regardless of baseline THI-score. The distributions of the populations, that do and do not experience a clinically important change in THI-score, have unequal variances for psychosocial counseling, while they have almost equal variances for audiological care.

DISCUSSION

Combining SDT and HBM can help assess accuracy and utility of patient decisions and thus may provide valuable information that can help to improve SDM by combining patient related outcome measures, decision drivers, and perceived benefits and costs of a treatment.

摘要

引言

不同的Cochrane研究结果表明,对于耳鸣的不同治疗方案存在相当大的专业权衡。在存在专业权衡的情况下,共同决策(SDM)是指导患者选择最适合其需求的干预措施的不可或缺的工具。为了改进共同决策,我们开发了一种方法,用于评估耳鸣患者在其就医过程中在不同治疗方案之间自由选择时所做决策的准确性和效用。不同的治疗方案包括听力护理和心理社会咨询。

方法

我们通过将信号检测理论(SDT)与健康信念模型(HBM)相结合,开发了一种统计模型。健康信念模型指出,对疾病严重程度的感知与患病角色行为密切相关。作为感知严重程度的替代指标,我们选择了基线时的听力损失和耳鸣障碍量表(THI)得分。接下来,我们将这些替代指标用作基于信号检测理论的线性回归模型中的预测因子,以分别确定听力护理和心理社会咨询的真阳性决策(选择一种治疗方案并在THI得分上提高超过7分)和假阳性决策(选择一种治疗方案并在THI得分上提高少于7分)的似然比。数据收集自荷兰一家门诊听力诊所的145名因耳鸣护理而转诊的成年人的前瞻性队列。参与者被要求自由决定是否接受听力护理(提供有或没有声音发生器的助听器)以及是否接受心理社会咨询。使用贝叶斯推理的逻辑回归来分别确定两种治疗方案的真阳性决策和假阳性决策的累积分布函数以及概率密度函数,它们是听力损失和基线THI得分的函数。通过累积分布函数,我们确定了决策的准确性。通过概率密度函数,我们计算了真阳性决策与假阳性决策的似然比,作为听力损失和基线THI得分的函数。这些似然比函数通过将决策标准与感知到的益处和成本相关联,从而允许评估决策的效用。

结果

基线THI得分驱动关于心理社会咨询的决策,而听力损失驱动关于听力护理的决策。关于心理社会咨询的决策比关于听力护理的决策更准确。然而,两种决策的准确性都较低(听力护理为0.255,心理社会咨询为 -0.429)。对于听力护理的决策,无偏决策标准为37dB(HL),这意味着听力损失低于37dB的患者采用宽松的决策标准(似然比<1),而听力损失超过37dB的患者采用严格的标准(似然比>1)。对于心理社会咨询的接受情况,决策标准始终严格,无论基线THI得分如何。经历THI得分临床重要变化和未经历这种变化的人群分布,对于心理社会咨询具有不等的方差,而对于听力护理则具有几乎相等的方差。

讨论

将信号检测理论和健康信念模型相结合,可以帮助评估患者决策的准确性和效用,因此可能提供有价值的信息,通过结合患者相关的结果指标、决策驱动因素以及治疗的感知益处和成本,有助于改进共同决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21dc/11653419/bd9c4485ec47/fnins-18-1451741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验