Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany.
Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany.
Brain. 2023 Dec 1;146(12):4809-4825. doi: 10.1093/brain/awad255.
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
只有通过实验来测试正式或计算模型,才能获得机制上的深入理解。此外,与病变研究类似,幻听现象可能成为理解健康听觉感知背后基本处理原则的一种手段。本文特别关注耳鸣——作为听觉幻听的主要范例——我们回顾了人工智能、心理学和神经科学交叉领域的最新研究工作。特别是,我们讨论了为什么每个患有耳鸣的人都患有(至少是隐性的)听力损失,但并非每个听力损失的人都患有耳鸣。我们认为,内在的神经噪声沿着听觉通路产生并放大,作为基于自适应随机共振恢复正常听力的补偿机制。神经噪声的增加可能会被误解为听觉输入,并被感知为耳鸣。该机制可以在贝叶斯大脑框架中形式化,其中感知(后验)吸收先验预测(大脑的期望)和似然(自下而上的神经信号)。似然的均值增加和方差降低(即增强精度)会使后验发生偏移,表明对感觉证据的误解,而大脑的可塑性变化可能进一步使这种误解复杂化,这种变化构成了先验预测的基础。因此,两个基本的处理原则为听觉幻听现象的出现提供了最大的解释力:预测编码作为自上而下的机制,以及自适应随机共振作为互补的自下而上的机制。我们得出的结论是,这两个原则在健康的听觉感知中也起着至关重要的作用。最后,在受神经科学启发的人工智能背景下,这两个处理原则都可能有助于改进当代机器学习技术。