文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单糖包被调节树突状细胞中纳米金颗粒的细胞内运输。

Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells.

作者信息

Alobaid Meshal A, Richards Sarah-Jane, Alexander Morgan R, Gibson Matthew I, Ghaemmaghami Amir M

机构信息

Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.

Biology, Immunology, American International University, Al-Jahra, Saad Al Abdullah, Kuwait.

出版信息

Mater Today Bio. 2024 Nov 27;29:101371. doi: 10.1016/j.mtbio.2024.101371. eCollection 2024 Dec.


DOI:10.1016/j.mtbio.2024.101371
PMID:39698001
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11652954/
Abstract

Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug delivery due to their biocompatibility, low toxicity and precise control over size, morphology and surface functionalization. Our investigation aimed to elucidate the intracellular uptake and trafficking of AuNPs coated with different combinations of monosaccharides (mannose, galactose, and fucose) in DCs. We used 30 unique polymer-tethered monosaccharide combinations to coat 16 nm diameter spherical gold nanoparticles and investigated their effect on DCs phenotype, uptake, and intracellular trafficking. DCs internalized AuNPs coated with 100 % fucose, 100 % mannose, 90 % mannose +10 % galactose, and 80 % mannose +20 % galactose with highest efficiency. Flow cytometry analysis indicated that 100 % fucose-coated AuNPs showed increased lysosomal and endosomal contents compared to other conditions and uncoated AuNPs. Imaging flow cytometry further demonstrated that 100 % fucose-coated AuNPs had enhanced co-localization with lysosomes, while 100 % mannose-coated AuNPs exhibited higher co-localization with endosomes. Furthermore, our data showed that the uptake of carbohydrate-coated AuNPs predominantly occurred through receptor-mediated endocytosis, as evidenced by a marked reduction of uptake upon treatment of DCs with methyl-β-cyclodextrins, known to disrupt receptor-mediated endocytosis. These findings highlight the utility of carbohydrate coatings to enable more targeted delivery of nanoparticles and their payload to distinct intracellular compartments in immune cells with potential applications in drug delivery and immunotherapy.

摘要

由于树突状细胞(DCs)在启动适应性免疫反应中起关键作用,它们已成为药物递送和免疫调节的一个有前景的靶点。金纳米颗粒(AuNPs)因其生物相容性、低毒性以及对尺寸、形态和表面功能化的精确控制,已成为靶向药物递送的一个受关注的平台。我们的研究旨在阐明用不同单糖(甘露糖、半乳糖和岩藻糖)组合包被的AuNPs在DCs中的细胞内摄取和转运情况。我们使用30种独特的聚合物连接单糖组合来包被直径为16纳米的球形金纳米颗粒,并研究它们对DCs表型、摄取和细胞内转运的影响。DCs对用100%岩藻糖、100%甘露糖、90%甘露糖 + 10%半乳糖和80%甘露糖 + 20%半乳糖包被的AuNPs摄取效率最高。流式细胞术分析表明,与其他条件和未包被的AuNPs相比,100%岩藻糖包被的AuNPs显示溶酶体和内体含量增加。成像流式细胞术进一步证明,100%岩藻糖包被的AuNPs与溶酶体的共定位增强,而100%甘露糖包被的AuNPs与内体的共定位更高。此外,我们的数据表明,碳水化合物包被的AuNPs的摄取主要通过受体介导的内吞作用发生,用甲基-β-环糊精处理DCs后摄取显著减少证明了这一点,已知甲基-β-环糊精会破坏受体介导的内吞作用。这些发现突出了碳水化合物包被在使纳米颗粒及其有效载荷更有针对性地递送至免疫细胞中不同细胞内区室方面的效用,在药物递送和免疫治疗中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/17a629ff0111/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/dc5b2fcab014/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/c284ae137b6e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/409f8b47cd83/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/8d673a25e7a3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/fd5ac25b8dc9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/bd038fd50d73/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/f1f60c2a65b8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/cf0afd406723/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/2751542ad151/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/17a629ff0111/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/dc5b2fcab014/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/c284ae137b6e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/409f8b47cd83/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/8d673a25e7a3/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/fd5ac25b8dc9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/bd038fd50d73/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/f1f60c2a65b8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/cf0afd406723/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/2751542ad151/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb4a/11652954/17a629ff0111/gr9.jpg

相似文献

[1]
Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells.

Mater Today Bio. 2024-11-27

[2]
Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties.

Mater Today Bio. 2020-9-30

[3]
Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion.

Nanoscale. 2020-11-5

[4]
The Shape of Nanostructures Encodes Immunomodulation of Carbohydrate Antigen and Vaccine Development.

ACS Chem Biol. 2022-5-20

[5]
Aerosol Delivery of Functionalized Gold Nanoparticles Target and Activate Dendritic Cells in a 3D Lung Cellular Model.

ACS Nano. 2016-12-19

[6]
Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation.

Front Immunol. 2018-5-22

[7]
Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells.

J Appl Toxicol. 2013-3-25

[8]
Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components.

J Nanobiotechnology. 2015-11-18

[9]
Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation.

Colloids Surf B Biointerfaces. 2021-1

[10]
Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells.

Part Fibre Toxicol. 2012-7-3

本文引用的文献

[1]
Multifunctional gold nanoparticles for cancer theranostics.

3 Biotech. 2024-11

[2]
Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy.

Pharmaceutics. 2023-7-2

[3]
Gold nanoparticles and gold nanorods in the landscape of cancer therapy.

Mol Cancer. 2023-6-21

[4]
Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism.

Nat Nanotechnol. 2023-6

[5]
Gold Nanoparticles as Drug Carriers: The Role of Silica and PEG as Surface Coatings in Optimizing Drug Loading.

Micromachines (Basel). 2023-2-15

[6]
A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics.

Crit Rev Ther Drug Carrier Syst. 2023

[7]
Optimization of the Polymer Coating for Glycosylated Gold Nanoparticle Biosensors to Ensure Stability and Rapid Optical Readouts.

ACS Macro Lett. 2014-10-21

[8]
Intranuclear Delivery of DNA Nanostructures via Cellular Mechanotransduction.

Nano Lett. 2022-4-27

[9]
Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles.

ACS Nano. 2021-8-24

[10]
Understanding selectivity of metabolic labelling and click-targeting in multicellular environments as a route to tissue selective drug delivery.

J Mater Chem B. 2021-7-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索