Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
Nanoscale. 2020 Nov 5;12(42):21832-21849. doi: 10.1039/d0nr05886f.
Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.
细胞内吞作用和纳米颗粒的细胞内转运诱导动态重排,这些重排极大地改变了纳米颗粒的物理性质,并在外部场激活时控制它们的生物结果。金纳米颗粒(AuNPs)在溶酶体等细胞内隔室中的精确结构、组织、分布和密度尚未得到全面研究,这阻碍了对其在感兴趣的细胞中的治疗活性的预测模型的推导。通过使用透射电子显微镜和小角 X 射线散射,我们确定了在 3-30nm 范围内的典型柠檬酸包覆的球形 AuNPs 在巨噬细胞、内皮细胞和结肠癌细胞的内溶酶体中形成分形簇。统计分析表明,簇的大小和内溶酶体的大小是相关的,但不取决于 AuNPs 的大小,除非较大的 AuNPs 预形成的聚集体被内化。与最大的 AuNPs 相比,较小的 AuNPs 被限制在更多数量的松散聚集体中,这些聚集体覆盖了内溶酶体的更高比例。细胞内簇的分形维数随着颗粒尺寸的增加而增加,而与细胞类型无关。因此,我们分析了 AuNPs 的这些细胞内结构参数如何影响它们的光吸收和光热性质。我们观察到,当纳米颗粒尺寸和细胞内簇的分形维数增加时,第二等离子体共振带被移动到近红外区域。这种细胞内等离子体耦合的现象与内溶酶体簇的大小或每个簇中的 AuNPs 数量没有直接关系,而是与簇的紧凑性和单个 AuNPs 的大小有关。细胞内等离子体耦合现象转化为在 808nm 激发下三种细胞类型的有效加热效率,将尺寸小于 30nm 的近红外透明的典型 AuNPs 转化为肿瘤微环境中的近红外吸收簇。利用细胞自发聚集球形 AuNPs 可能是一种比利用复杂工程从其环境中获得近红外吸收纳米结构更有价值的治疗策略。我们的论文揭示了 AuNP 细胞内重排,并提出了一种将其细胞内命运与其在医学应用中利用的原位物理性质联系起来的通用方法。