Maya-Arteaga Juan Pablo, Martínez-Orozco Humberto, Diaz-Cintra Sofía
Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Santiago de Querétaro, Mexico.
Front Cell Neurosci. 2024 Dec 3;18:1505048. doi: 10.3389/fncel.2024.1505048. eCollection 2024.
Microglia are dynamic central nervous system cells crucial for maintaining homeostasis and responding to neuroinflammation, as evidenced by their varied morphologies. Existing morphology analysis often fails to detect subtle variations within the full spectrum of microglial morphologies due to their reliance on predefined categories. Here, we present MorphoGlia, an interactive, user-friendly pipeline that objectively characterizes microglial morphologies. MorphoGlia employs a machine learning ensemble to select relevant morphological features of microglia cells, perform dimensionality reduction, cluster these features, and subsequently map the clustered cells back onto the tissue, providing a spatial context for the identified microglial morphologies. We applied this pipeline to compare the responses between saline solution (SS) and scopolamine (SCOP) groups in a SCOP-induced mouse model of Alzheimer's disease, with a specific focus on the hippocampal subregions CA1 and Hilus. Next, we assessed microglial morphologies across four groups: SS-CA1, SCOP-CA1, SS-Hilus, and SCOP-Hilus. The results demonstrated that MorphoGlia effectively differentiated between SS and SCOP-treated groups, identifying distinct clusters of microglial morphologies commonly associated with pro-inflammatory states in the SCOP groups. Additionally, MorphoGlia enabled spatial mapping of these clusters, identifying the most affected hippocampal layers. This study highlights MorphoGlia's capability to provide unbiased analysis and clustering of microglial morphological states, making it a valuable tool for exploring microglial heterogeneity and its implications for central nervous system pathologies.
小胶质细胞是动态的中枢神经系统细胞,对维持体内平衡和应对神经炎症至关重要,这从它们多样的形态中可见一斑。由于现有形态分析依赖于预定义的类别,往往无法检测到小胶质细胞形态全谱中的细微变化。在此,我们展示了MorphoGlia,这是一个交互式、用户友好的流程,可客观地表征小胶质细胞形态。MorphoGlia采用机器学习集成来选择小胶质细胞的相关形态特征、进行降维、对这些特征进行聚类,随后将聚类后的细胞映射回组织,为所识别的小胶质细胞形态提供空间背景。我们将此流程应用于比较生理盐水(SS)组和东莨菪碱(SCOP)组在SCOP诱导的阿尔茨海默病小鼠模型中的反应,特别关注海马亚区CA1和齿状回。接下来,我们评估了四组的小胶质细胞形态:SS-CA1、SCOP-CA1、SS-齿状回和SCOP-齿状回。结果表明,MorphoGlia能有效区分SS组和SCOP处理组,识别出SCOP组中通常与促炎状态相关的不同小胶质细胞形态簇。此外,MorphoGlia能够对这些簇进行空间映射,确定受影响最大的海马层。这项研究突出了MorphoGlia在提供无偏分析和小胶质细胞形态状态聚类方面的能力,使其成为探索小胶质细胞异质性及其对中枢神经系统病理学影响的有价值工具。