RhoA基因中的致病性单核苷酸多态性:通过分子动力学模拟深入了解对RhoA-PLD1相互作用的结构和功能影响
Pathogenic single nucleotide polymorphisms in RhoA gene: Insights into structural and functional impacts on RhoA-PLD1 interaction through molecular dynamics simulation.
作者信息
Hasan Mahbub, Sarker Md Nayem, Jabin Tazkia, Sarker Saifuddin, Ahmed Shamim, Abdullah-Al-Shoeb Mohammad, Hossain Tanvir
机构信息
Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
出版信息
Curr Res Struct Biol. 2024 Nov 28;8:100159. doi: 10.1016/j.crstbi.2024.100159. eCollection 2024.
Molecular switches serve as key regulators of biological systems by acting as one of the crucial driving forces in the initiation of signal transduction pathway cascades. The Ras homolog gene family member A (RhoA) is one of the molecular switches that binds with GTP in order to cycle between an active GTP-bound state and an inactive GDP-bound state. Any aberrance in control over this circuit, particularly due to any perturbation in switching, leads to the development of different pathogenicity. Consequently, the single nucleotide polymorphisms (SNPs) within the RhoA gene, especially deleterious genetic variations, are crucial to study to forecast structural alteration and their functional impacts in light of disease onset. In this comprehensive study, we employed a range of computational tools to screen the deleterious SNPs of RhoA from 207 nonsynonymous SNPs (nsSNPs). By utilizing 7 distinct tools for further analysis, 8 common deleterious SNPs were sorted, among them 5 nsSNPs (V9G, G17E, E40K, A61T, F171L) were found to be in the highly conserved regions, with E40K and A61T at G2 and G3 motif of the GTP-binding domain respectively, indicating potential perturbation in GTP/GDP binding ability of the protein. RhoA-GDP complex interacts with the enzyme phospholipase, specifically PLD1, to regulate different cellular activities. PLD1 is also a crucial regulator of thrombosis and cancer. In that line of focus, our initial structural analysis of Y66H, A61T, G17E, I86N, and I151T mutations of RhoA revealed remarkable decreased hydrophobicity from which we further filtered out G17E and I86N which may have potential impact on the RhoA-GDP-PLD1 complex. Intriguingly, the comparative 250 ns (ns) molecular dynamics (MD) simulation of these two mutated complexes revealed overall structural instability and altered interaction patterns. Therefore, further investigation into these deleterious mutations with and studies could lead to the identification of potential biomarkers in terms of different pathogenesis and could also be utilized in personalized therapeutic targets in the long run.
分子开关作为生物系统的关键调节因子,是信号转导通路级联反应起始的关键驱动力之一。Ras同源基因家族成员A(RhoA)是一种分子开关,它与GTP结合,以便在活性GTP结合状态和非活性GDP结合状态之间循环。对该循环的任何控制异常,特别是由于开关中的任何扰动,都会导致不同致病性的发展。因此,RhoA基因内的单核苷酸多态性(SNP),尤其是有害的基因变异,对于研究预测结构改变及其在疾病发生方面的功能影响至关重要。在这项全面的研究中,我们使用了一系列计算工具从207个非同义单核苷酸多态性(nsSNP)中筛选RhoA的有害SNP。通过使用7种不同的工具进行进一步分析,筛选出8个常见的有害SNP,其中5个nsSNP(V9G、G17E、E40K、A61T、F171L)位于高度保守区域,E40K和A61T分别位于GTP结合域的G2和G3基序处,表明该蛋白的GTP/GDP结合能力可能受到扰动。RhoA-GDP复合物与磷脂酶,特别是PLD1相互作用,以调节不同的细胞活动。PLD1也是血栓形成和癌症的关键调节因子。在这个研究重点中,我们对RhoA的Y66H、A61T、G17E、I86N和I151T突变进行的初步结构分析显示疏水性显著降低,从中我们进一步筛选出可能对RhoA-GDP-PLD1复合物有潜在影响的G17E和I86N。有趣的是,对这两种突变复合物进行的250纳秒(ns)分子动力学(MD)模拟显示整体结构不稳定且相互作用模式改变。因此,对这些有害突变进行进一步的 和 研究可能会在不同的发病机制方面鉴定出潜在的生物标志物,并且从长远来看也可用于个性化治疗靶点。