Suppr超能文献

SPW-TransUNet:基于空间垂直窗口变换器的三维计算机断层扫描-锥束计算机断层扫描图像配准

SPW-TransUNet: three-dimensional computed tomography-cone beam computed tomography image registration with spatial perpendicular window Transformer.

作者信息

Hu Rui, Yang Shimeng, Zhang Jingjing, Hu Xiaokun, Li Teng

机构信息

Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education/School of Artificial Intelligence, Anhui University, Hefei, China.

Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):9506-9521. doi: 10.21037/qims-24-1138. Epub 2024 Nov 29.

Abstract

BACKGROUND

Current medical image registration methods based on Transformer still encounter challenges, including significant local intensity differences and limited computational efficiency when dealing with three-dimensional (3D) computed tomography (CT) and cone beam CT (CBCT) images. These limitations hinder the precise alignment necessary for effective diagnosis and treatment planning. Therefore, the aim of this study is to develop a novel method that overcomes these challenges by enhancing feature interaction and computational efficiency in 3D medical image registration.

METHODS

This paper introduces a novel method that enhances feature interaction within Transformer by computing attention within resizable spatial perpendicular window (SPW). Additionally, it introduces a self-learning mapping control (SLMC) mechanism, which uses a mini convolutional neural network (CNN) to adaptively transform feature vectors into probability vectors. This approach is integrated into the UNet framework, resulting in the SPW-TransUNet. The effectiveness of the SPW-TransUNet is demonstrated through evaluations on two critical 3D medical imaging tasks: CT-CBCT registration and inter-CT registration. We utilized a range of evaluation metrics including Dice similarity coefficient (DICE), structural similarity index measure (SSIM), target registration error (TRE), and negative Jacobian percentage. The validation process involved comparative analysis against established baseline methods using statistical tests to ensure the robustness and reliability of our results.

RESULTS

The proposed method demonstrated outstanding performance in the registration of 124 pairs of CT-CBCT lung images from 20 patients, achieving the lowest TRE of 2.16 mm and a minimal negative Jacobian of 0.126. It also recorded the highest SSIM and Dice coefficient of 86.87% and 88.28%, respectively. For the liver CT task involving 150 patients, the method achieved peak SSIM and DICE scores of 76.92% and 85.77%, respectively. Furthermore, ablation studies confirmed the effectiveness of the designed structural components.

CONCLUSIONS

The SPW-TransUNet offers significant improvements in feature interaction and computational efficiency for medical image registration, providing an effective reference solution for patient and target localization in image-guided radiation therapy.

摘要

背景

当前基于Transformer的医学图像配准方法仍面临挑战,包括在处理三维(3D)计算机断层扫描(CT)和锥束CT(CBCT)图像时存在显著的局部强度差异以及计算效率有限。这些限制阻碍了有效诊断和治疗规划所需的精确对齐。因此,本研究的目的是开发一种新方法,通过增强3D医学图像配准中的特征交互和计算效率来克服这些挑战。

方法

本文介绍了一种新方法,通过在可调整大小的空间垂直窗口(SPW)内计算注意力来增强Transformer内的特征交互。此外,还引入了一种自学习映射控制(SLMC)机制,该机制使用一个小型卷积神经网络(CNN)将特征向量自适应地转换为概率向量。这种方法被集成到UNet框架中,产生了SPW-TransUNet。通过对两项关键的3D医学成像任务进行评估,即CT-CBCT配准和CT间配准,证明了SPW-TransUNet的有效性。我们使用了一系列评估指标,包括骰子相似系数(DICE)、结构相似性指数测量(SSIM)、目标配准误差(TRE)和负雅可比百分比。验证过程包括使用统计测试与既定的基线方法进行对比分析,以确保结果的稳健性和可靠性。

结果

所提出的方法在对来自20名患者的124对CT-CBCT肺部图像进行配准时表现出色,实现了最低的TRE为2.16毫米,最小负雅可比为0.126。它还记录了最高的SSIM和骰子系数,分别为86.87%和88.28%。对于涉及150名患者的肝脏CT任务,该方法分别达到了峰值SSIM和DICE分数76.92%和85.77%。此外,消融研究证实了所设计结构组件的有效性。

结论

SPW-TransUNet在医学图像配准的特征交互和计算效率方面有显著改进,为图像引导放射治疗中的患者和目标定位提供了有效的参考解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4531/11651926/3fa461a533e4/qims-14-12-9506-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验