Suppr超能文献

优化前列腺影像报告和数据系统(PI-RADS)≥3级病变患者的前列腺活检决策:基于磁共振成像(MRI)的新型列线图

Optimizing prostate biopsy decision-making for patients with Prostate Imaging-Reporting and Data System (PI-RADS) ≥3 lesions: novel magnetic resonance imaging (MRI)-based nomograms.

作者信息

Chen Yanling, Lin Jinhua, Cao Wenxin, Meng Tiebao, Ling Jian, Wen Zhihua, Kong Lingmin, Qian Long, Guo Yan, Zhang Weijing, Wang Huanjun

机构信息

Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.

Department of Medical Ultrasound, Division of Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):8196-8210. doi: 10.21037/qims-24-1072. Epub 2024 Oct 11.

Abstract

BACKGROUND

Current protocols endorse biopsies for men with Prostate Imaging-Reporting and Data System (PI-RADS v2.1) scores ≥3. However, the subjective nature of PI-RADS can lead to increased false positives and unnecessary biopsies. Synthetic magnetic resonance imaging (MRI), which quantifies multiple relaxation parameters, and apparent diffusion coefficient (ADC), which is the most commonly used quantitative metric, have not yet been combined with a predictive tool. This study aimed to develop and validate novel nomograms using multiparametric MRI, including synthetic MRI, to forecast the risk of prostate cancer (PCa) and clinically significant prostate cancer (csPCa), and to assess the potential of these nomograms to reduce unnecessary biopsies in PI-RADS ≥3 cases.

METHODS

Between August 2020 and August 2022, 323 patients suspected of PCa were enrolled from two centers (cohort 1: 243; cohort 2: 80). All participants underwent multiparametric MRI, including synthetic MRI, before targeted biopsy. Univariable and multivariable logistic regression identified risk factors for PCa and csPCa. Internal validation was conducted using bootstrap resampling, and nomogram performance was evaluated through receiver operating characteristic (ROC) curve analysis, calibration plots, and decision curve analysis (DCA). External validation was performed with cohort 2 data. The impact of the nomograms on biopsy decisions was measured by the avoidance rate and the risk of missed diagnoses.

RESULTS

The predictive nomogram for PCa incorporated four risk factors: age, quantitative transverse relaxation time (T2 value) from synthetic MRI, ADC value, and PI-RADS score. The csPCa nomogram included age, ADC value, and PI-RADS score. The nomograms showed high diagnostic accuracy with the area under the curves (AUCs) of 0.916 [95% confidence interval (CI): 0.901-0.974] and 0.947 (95% CI: 0.900-0.994) for PCa prediction in training and external datasets, and 0.884 (95% CI: 0.840-0.928) and 0.935 (95% CI: 0.871-0.998) for csPCa. Calibration curves confirmed the accuracy of predictions. DCA indicated that the nomograms possessed significant net benefit. For PCa detection, biopsy strategy combining our nomogram reduced biopsy procedures by 20.2% and 13.8% in the training and external cohorts, respectively, with a PCa miss rate of 4.5% for both cohorts. The csPCa-targeted biopsy strategy also provided clinical benefits, with biopsy avoidance rates of 20.2% and 10.0%, and csPCa miss rates of 4.8% and 1.7% for PI-RADS ≥3 patients in the two cohorts.

CONCLUSIONS

The nomograms integrating multiparametric MRI and synthetic MRI are highly effective in predicting PCa and csPCa, concurrently, reducing unnecessary biopsies for patients with PI-RADS ≥3 lesion.

摘要

背景

当前的方案支持对前列腺影像报告和数据系统(PI-RADS v2.1)评分≥3的男性进行活检。然而,PI-RADS的主观性可能导致假阳性增加和不必要的活检。合成磁共振成像(MRI)可量化多个弛豫参数,而表观扩散系数(ADC)是最常用的定量指标,尚未与预测工具相结合。本研究旨在开发并验证使用多参数MRI(包括合成MRI)的新型列线图,以预测前列腺癌(PCa)和临床显著前列腺癌(csPCa)的风险,并评估这些列线图在PI-RADS≥3的病例中减少不必要活检的潜力。

方法

在2020年8月至2022年8月期间,从两个中心招募了323例疑似PCa的患者(队列1:243例;队列2:80例)。所有参与者在靶向活检前均接受了多参数MRI检查,包括合成MRI。单变量和多变量逻辑回归确定了PCa和csPCa的危险因素。使用自助重采样进行内部验证,并通过受试者操作特征(ROC)曲线分析、校准图和决策曲线分析(DCA)评估列线图性能。使用队列2的数据进行外部验证。通过避免率和漏诊风险来衡量列线图对活检决策的影响。

结果

PCa预测列线图纳入了四个危险因素:年龄、合成MRI的定量横向弛豫时间(T2值)、ADC值和PI-RADS评分。csPCa列线图包括年龄、ADC值和PI-RADS评分。列线图显示出较高的诊断准确性,在训练集和外部数据集中预测PCa的曲线下面积(AUC)分别为0.916 [95%置信区间(CI):0.901 - 0.974]和0.947(95% CI:0.900 - 0.994),预测csPCa的AUC分别为0.884(95% CI:0.840 - 0.928)和0.935(95% CI:0.871 - 0.998)。校准曲线证实了预测的准确性。DCA表明列线图具有显著的净效益。对于PCa检测,结合我们列线图的活检策略在训练集和外部队列中分别减少了20.2%和13.8%的活检程序,两个队列的PCa漏诊率均为4.5%。针对csPCa的活检策略也提供了临床益处,两个队列中PI-RADS≥3患者的活检避免率分别为20.2%和10.0%,csPCa漏诊率分别为4.8%和1.7%。

结论

整合多参数MRI和合成MRI的列线图在预测PCa和csPCa方面非常有效,同时减少了PI-RADS≥3病变患者的不必要活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/583e/11651980/d75fedba01d3/qims-14-12-8196-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验