Suppr超能文献

用于非小细胞肺癌微波消融术中评估的图像融合:一项回顾性队列研究。

Image fusion for intraoperative evaluation of microwave ablation in non-small cell lung cancer: a retrospective cohort study.

作者信息

Yang Xuhui, Tang Weiqing, Yuan Zheng, Wang Mingsong, Liang Xi

机构信息

Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):9207-9219. doi: 10.21037/qims-24-690. Epub 2024 Nov 5.

Abstract

BACKGROUND

Patients with early-stage non-small cell lung cancer (NSCLC) who are intolerant to surgery have a poor prognosis. Microwave ablation is an effective treatment method. However, the density of the lesion may occasionally be similar to that of the ablation zone, thus rendering it difficult to identify the relative position of the lesion and ablation zone during ablation. This study aimed to use image fusion technology to help confirm the relative position of lesions and ablation zones and to facilitate immediate assessment of the residual lesions.

METHODS

This retrospective study was conducted in Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, between August 2019 and August 2021, and consecutively included patients who had undergone computed tomography (CT)-guided percutaneous microwave ablation for NSCLC. A single radiologist manually fused the intraoperative CT images alignment of the lesions. Two other clinicians examined the postoperative CT images and the fused CT images to determine whether a lesion remained and to measure the minimum ablative margin (MAM). One of the clinicians assessed the complete ablation rate on CT images 6 months after ablation. The Chi-squared test was used to calculate the kappa coefficients between the two investigators. Binary logistic regression was used to analyze the correlation between each characteristic parameter of the lesion and image quality. The clinicians involved in this study all had over 10 years of work experience.

RESULTS

Among the 29 participants, comprising 32 lesions retrospectively included (median age 65 years; 41.4% male), the image fusion success rate was 96.88%, and the median fusion time was10 minutes. The rate of accurate recognition for the relative position of pulmonary nodules and ablation zone on original CT images of the two physicians was 7.52% and 12.90%, respectively, while that achieved from the fused CT images was 87.1% and 86.0%, respectively; in agreement testing, the kappa coefficient between the physicians was 0.859 (P<0.001). The MAM on fused images was 3.05±1.35 mm (range, 1.1-6.7 mm). The quality of fused images was positively correlated with the CT values of focus (P=0.009). The complete ablation rate (93.5%) indicated by immediate image fusion post ablation was consistent with that determined by CT images after 6 months after ablation, with 100% sensitivity and specificity.

CONCLUSIONS

Image fusion is a valuable strategy for evaluating whether intraoperative ground glass nodules are completely ablated by microwave ablation.

摘要

背景

对手术不耐受的早期非小细胞肺癌(NSCLC)患者预后较差。微波消融是一种有效的治疗方法。然而,病变的密度偶尔可能与消融区的密度相似,因此在消融过程中难以确定病变与消融区的相对位置。本研究旨在使用图像融合技术来帮助确认病变与消融区的相对位置,并便于对残留病变进行即时评估。

方法

本回顾性研究于2019年8月至2021年8月在上海交通大学医学院附属第九人民医院进行,连续纳入接受计算机断层扫描(CT)引导下经皮微波消融治疗NSCLC的患者。一名放射科医生手动融合术中病变的CT图像对齐。另外两名临床医生检查术后CT图像和融合后的CT图像,以确定是否仍有病变并测量最小消融边缘(MAM)。其中一名临床医生在消融后6个月评估CT图像上的完全消融率。采用卡方检验计算两名研究者之间的kappa系数。采用二元逻辑回归分析病变各特征参数与图像质量之间的相关性。参与本研究的临床医生均有超过10年的工作经验。

结果

在回顾性纳入的29名参与者(共32个病变,中位年龄65岁;41.4%为男性)中,图像融合成功率为96.88%,中位融合时间为10分钟。两名医生在原始CT图像上对肺结节与消融区相对位置的准确识别率分别为7.52%和12.90%,而在融合后的CT图像上分别为87.1%和86.0%;在一致性检验中,医生之间的kappa系数为0.859(P<0.001)。融合图像上的MAM为3.05±1.35mm(范围1.1-6.7mm)。融合图像的质量与病灶的CT值呈正相关(P=0.009)。消融后即时图像融合显示的完全消融率(93.5%)与消融后6个月CT图像确定的完全消融率一致,敏感性和特异性均为100%。

结论

图像融合是评估术中磨玻璃结节是否被微波消融完全消融的一种有价值的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd5/11652049/0a10e5be173b/qims-14-12-9207-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验