Suppr超能文献

术后第一天的肺部超声可预测电视辅助胸腔镜手术后的院外肺部并发症:一项前瞻性队列研究。

Lung ultrasound on first postoperative day predicts out-of-hospital pulmonary complications following video-assisted thoracic surgery: A prospective cohort study.

作者信息

Lu ZiYun, Sun Hang, Niu Shujie, Wang Min, Zhong Yiwei, Li Bingbing

机构信息

From the Department of Anaesthesiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China (ZL, HS, SN, MW, YZ, BL).

出版信息

Eur J Anaesthesiol. 2025 Apr 1;42(4):347-356. doi: 10.1097/EJA.0000000000002113. Epub 2024 Dec 18.

Abstract

BACKGROUND

The integration of enhanced recovery after surgery (ERAS) protocols into the peri-operative management of video-assisted thoracic surgery (VATS) has facilitated rapid patient recovery, enabling discharge within 48 h. However, postoperative pulmonary complications (PPCs) postdischarge pose significant concerns for patient welfare. Despite the established utility of lung ultrasound (LUS) in diagnosing the causes of dyspnoea, the effectiveness of quantitative LUS in predicting PPCs after VATS remains uncertain.

OBJECTIVES

To determine whether quantitative LUS performed 24 h after surgery can identify patients with a higher risk of developing PPCs within 30 days after discharge from hospital.

DESIGN

Single-centre prospective cohort study.

SETTING

Academic tertiary care medical centre.

PATIENTS

Adults scheduled for elective VATS under general anaesthesia from November 2022 to January 2023.

MAIN OUTCOME MEASURES

This primary aim was to verify the association between lung ultrasound score (LUSS) on postoperative day 1 (POD1) and PPCs. The secondary aim was to identify other relevant peri-operative factors closely related to PPCs and establish a model capable of predicting the risk of PPCs in patients undergoing fast-track VATS.

RESULTS

Of the 200 recruited patients, 182 completed the LUS examination and 30-day follow-up. Of these, 66 (36.2%) developed various types of PPCs. These patients had a higher LUSS on POD 1 ( P  < 0.001), and more subpleural consolidation areas compared to those without PPCs ( P  < 0.001). Receiver-operating characteristics (ROC) analysis identified the optimal LUSS cut-off value at 6 points for predicting the occurrence of PPCs, with an area under the curve (AUC) of 0.838 (95% CI, 0.768 to 0.909). Patients with PPCs had higher rates of immune system diseases and ARISCAT score, longer hospital stay and procalcitonin levels, increased frequency of lobar resection, longer durations of surgical and mechanical ventilation, and greater incidence of unplanned hospital readmissions within 30 days postdischarge, compared with those without PPCs (all P  < 0.001). Multivariable logistic regression analysis indicated that the comorbidity of immune system disease, along with postoperative 24 h LUSS, were independent risk factor for PPCs within 30 days after VATS.

CONCLUSION

LUSS on POD 1 emerged as an independent risk factor for PPCs in fast-track VATS patients and reliably predicted the occurrence of PPCs within 30 days of hospital discharge.

TRIAL REGISTRATION

ClinicalTrials. gov No. ChiCTR2200065865.

摘要

背景

将术后加速康复(ERAS)方案纳入电视辅助胸腔镜手术(VATS)的围手术期管理,有助于患者快速康复,实现48小时内出院。然而,出院后发生的术后肺部并发症(PPCs)对患者的健康构成了重大担忧。尽管肺超声(LUS)在诊断呼吸困难原因方面已确立其效用,但定量LUS在预测VATS术后PPCs方面的有效性仍不确定。

目的

确定术后24小时进行的定量LUS是否能识别出院后30天内发生PPCs风险较高的患者。

设计

单中心前瞻性队列研究。

地点

学术性三级医疗中心。

患者

2022年11月至2023年1月计划在全身麻醉下接受择期VATS的成年人。

主要观察指标

主要目的是验证术后第1天(POD1)的肺超声评分(LUSS)与PPCs之间的关联。次要目的是确定与PPCs密切相关的其他围手术期相关因素,并建立一个能够预测接受快速康复VATS患者发生PPCs风险的模型。

结果

在招募的200例患者中,182例完成了LUS检查和30天随访。其中,66例(36.2%)发生了各种类型的PPCs。与未发生PPCs的患者相比,这些患者在POD 1时的LUSS更高(P<0.001),胸膜下实变区域更多(P<0.001)。受试者工作特征(ROC)分析确定预测PPCs发生的最佳LUSS临界值为6分,曲线下面积(AUC)为0.838(95%CI,0.768至0.909)。与未发生PPCs的患者相比,发生PPCs的患者免疫系统疾病和ARISCAT评分较高,住院时间和降钙素原水平较长,肺叶切除频率增加,手术和机械通气时间较长,出院后30天内非计划再次入院发生率较高(所有P<0.001)。多变量逻辑回归分析表明,免疫系统疾病合并症以及术后24小时LUSS是VATS术后30天内发生PPCs的独立危险因素。

结论

POD 1时的LUSS是快速康复VATS患者发生PPCs的独立危险因素,并能可靠地预测出院后30天内PPCs的发生。

试验注册

ClinicalTrials.gov编号:ChiCTR2200065865。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验