在结核病流行地区,肺部超声用于肺炎的诊断和监测:一项前瞻性研究。

Lung ultrasound for the diagnosis and monitoring of pneumonia in a tuberculosis-endemic setting: a prospective study.

作者信息

Tran-Le Quoc-Khanh, Thai Thanh Truc, Tran-Ngoc Nguyen, Duong-Minh Ngoc, Nguyen-Ho Lam, Nguyen-Dang Khoa, Nhat Phung Tran Huy, Pisani Luigi, Vu-Hoai Nam, Le-Thuong Vu

机构信息

Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Viet Nam.

Department of Pulmonary, Cho Ray Hospital, Ho Chi Minh City, Viet Nam.

出版信息

BMJ Open. 2025 Apr 7;15(4):e094799. doi: 10.1136/bmjopen-2024-094799.

Abstract

UNLABELLED

Lung ultrasound (LUS) has proven high diagnostic accuracy for community-acquired pneumonia (CAP) in developed countries. However, its diagnostic performance in resource-limited settings with high pulmonary tuberculosis (TB) incidence is less established. Additionally, the role of LUS in monitoring CAP progression remains underexplored.

OBJECTIVES

To validate the diagnostic performance, monitoring and prognostic utility of LUS for CAP in a high pulmonary TB incidence setting.

DESIGN

Prospective single-centre cohort study.

SETTING

Pulmonary department of a tertiary hospital in Vietnam.

PARTICIPANTS

A total of 158 patients suspected of having CAP were enrolled, with 136 (mean age 62 years, 72.8% male) included in the final analysis.

INTERVENTIONS

Patients underwent LUS and chest X-ray (CXR) within 24 hours of admission, with a follow-up LUS on days 5-8.

PRIMARY AND SECONDARY OUTCOME MEASURES

The primary outcome was the diagnostic accuracy of LUS and CXR compared with discharge diagnosis. Secondary outcomes included the accuracy compared with CT scan results, changes in LUS parameters-consolidation size, number and Lung Ultrasound Score (LUSS)-and their association with in-hospital mortality.

RESULTS

LUS demonstrated higher sensitivity than CXR (96.0% (95% CI 90.0% to 99.0%) vs 82.8% (95% CI 73.9% to 89.7%)). LUS specificity was 64.9% (95% CI 47.5% to 80.0%), compared with 54.1% (95% CI 36.9% to 70.5%) for CXR. The moderate specificity for LUS was due to sonographic-similar conditions, notably TB in 5.1% of patients. Consolidation size and numbers showed marginal resolution, while LUSS showed more pronounced decreases over time. The baseline LUSS showed limited discriminative ability for predicting mortality (area under the curve, AUC 0.65, 95% CI 0.55 to 0.75), while follow-up LUSS and changes in LUSS (ΔLUSS) demonstrated higher levels of discrimination (AUC 0.81 (95% CI 0.71 to 0.89) and 0.89 (95% CI 0.80 to 0.95), respectively). For each one-point increase in ΔLUSS, the odds of in-hospital mortality went up by 70% (p=0.002). An improved LUSS effectively ruled out mortality (negative predictive value 97.4%).

CONCLUSION

Although LUS is highly sensitive for diagnosing CAP, its specificity in TB-endemic regions warrants further caution. Serial LUS assessments, particularly monitoring LUSS changes, are valuable for tracking disease progression and prognostication, with increasing LUSS indicating potential clinical deterioration.

摘要

未标注

在发达国家,肺部超声(LUS)已被证明对社区获得性肺炎(CAP)具有较高的诊断准确性。然而,在肺结核(TB)发病率较高的资源有限环境中,其诊断性能尚不太明确。此外,LUS在监测CAP进展中的作用仍未得到充分探索。

目的

在肺结核高发病率环境中验证LUS对CAP的诊断性能、监测及预后效用。

设计

前瞻性单中心队列研究。

地点

越南一家三级医院的肺病科。

参与者

共纳入158例疑似患有CAP的患者,最终分析纳入136例(平均年龄62岁,72.8%为男性)。

干预措施

患者在入院后24小时内接受LUS和胸部X线(CXR)检查,并在第5 - 8天进行LUS随访。

主要和次要结局指标

主要结局是LUS和CXR与出院诊断相比的诊断准确性。次要结局包括与CT扫描结果相比的准确性、LUS参数(实变大小、数量和肺部超声评分(LUSS))的变化及其与院内死亡率的关联。

结果

LUS显示出比CXR更高的敏感性(96.0%(95%CI 90.0%至99.0%)对82.8%(95%CI 73.9%至89.7%))。LUS的特异性为64.9%(95%CI 47.5%至80.0%),而CXR为54.1%(95%CI 36.9%至70.5%)。LUS的中度特异性是由于超声表现相似的情况,特别是5.1%的患者患有肺结核。实变大小和数量显示出轻微的消退,而LUSS随时间显示出更明显的下降。基线LUSS对预测死亡率的判别能力有限(曲线下面积,AUC 0.65,95%CI 0.55至0.75),而随访LUSS和LUSS变化(ΔLUSS)显示出更高的判别水平(AUC分别为0.81(95%CI 0.71至0.89)和0.89(95%CI 0.80至0.95))。ΔLUSS每增加1分,院内死亡几率上升70%(p = 0.002)。LUSS改善有效地排除了死亡(阴性预测值97.4%)。

结论

尽管LUS对诊断CAP高度敏感,但其在结核病流行地区的特异性仍需进一步谨慎对待。连续的LUS评估,特别是监测LUSS变化,对于追踪疾病进展和预后具有重要价值,LUSS增加表明可能出现临床恶化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2370/11977466/70d3b14ee879/bmjopen-15-4-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索