From the Departments of Radiology (J.C.C., H.N., S.K., A.T.F., H.T., P.K., P.R., A.K.B., G.M.C., B.J.E., N.T.) and Urology (L.A.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; Department of Radiology, Massachusetts General Hospital, Boston, Mass (J.C.C.); Departments of Radiology (C.W.B.) and Urology (C.D.D.), Mayo Clinic, Jacksonville, Fla; and Departments of Radiology (A.K.) and Urology (M.R.H.), Mayo Clinic, Scottsdale, Ariz.
Radiology. 2024 Aug;312(2):e232635. doi: 10.1148/radiol.232635.
Background Multiparametric MRI can help identify clinically significant prostate cancer (csPCa) (Gleason score ≥7) but is limited by reader experience and interobserver variability. In contrast, deep learning (DL) produces deterministic outputs. Purpose To develop a DL model to predict the presence of csPCa by using patient-level labels without information about tumor location and to compare its performance with that of radiologists. Materials and Methods Data from patients without known csPCa who underwent MRI from January 2017 to December 2019 at one of multiple sites of a single academic institution were retrospectively reviewed. A convolutional neural network was trained to predict csPCa from T2-weighted images, diffusion-weighted images, apparent diffusion coefficient maps, and T1-weighted contrast-enhanced images. The reference standard was pathologic diagnosis. Radiologist performance was evaluated as follows: Radiology reports were used for the internal test set, and four radiologists' PI-RADS ratings were used for the external (ProstateX) test set. The performance was compared using areas under the receiver operating characteristic curves (AUCs) and the DeLong test. Gradient-weighted class activation maps (Grad-CAMs) were used to show tumor localization. Results Among 5735 examinations in 5215 patients (mean age, 66 years ± 8 [SD]; all male), 1514 examinations (1454 patients) showed csPCa. In the internal test set (400 examinations), the AUC was 0.89 and 0.89 for the DL classifier and radiologists, respectively ( = .88). In the external test set (204 examinations), the AUC was 0.86 and 0.84 for the DL classifier and radiologists, respectively ( = .68). DL classifier plus radiologists had an AUC of 0.89 ( < .001). Grad-CAMs demonstrated activation over the csPCa lesion in 35 of 38 and 56 of 58 true-positive examinations in internal and external test sets, respectively. Conclusion The performance of a DL model was not different from that of radiologists in the detection of csPCa at MRI, and Grad-CAMs localized the tumor. © RSNA, 2024 See also the editorial by Johnson and Chandarana in this issue.
背景 多参数 MRI 有助于识别临床显著前列腺癌(csPCa)(Gleason 评分≥7),但受到读者经验和观察者间差异的限制。相比之下,深度学习(DL)可产生确定性输出。
目的 利用患者层面的标签开发一种 DL 模型来预测 csPCa 的存在,而无需肿瘤位置信息,并与放射科医生的表现进行比较。
材料与方法 回顾性分析 2017 年 1 月至 2019 年 12 月期间,来自一家学术机构多个地点的 5215 例无已知 csPCa 患者的 MRI 数据。使用卷积神经网络从 T2 加权图像、弥散加权图像、表观弥散系数图和 T1 加权对比增强图像中预测 csPCa。参考标准为病理诊断。
使用放射科报告作为内部测试集,四位放射科医生的 PI-RADS 评分作为外部(ProstateX)测试集。使用受试者工作特征曲线下面积(AUC)和 DeLong 检验进行比较。使用梯度加权类激活图(Grad-CAMs)显示肿瘤定位。
结果 在 5215 例患者的 5735 次检查中(平均年龄 66 岁±8[标准差];均为男性),1514 次检查(1454 例)显示 csPCa。在内部测试集中(400 次检查),DL 分类器和放射科医生的 AUC 分别为 0.89 和 0.89(=0.88)。在外部测试集中(204 次检查),DL 分类器和放射科医生的 AUC 分别为 0.86 和 0.84(=0.68)。DL 分类器加放射科医生的 AUC 为 0.89(<0.001)。Grad-CAMs 分别在内部和外部测试集的 38 次和 58 次真阳性检查中激活 csPCa 病变。
结论 在 MRI 检测 csPCa 方面,DL 模型的性能与放射科医生无差异,Grad-CAMs 可定位肿瘤。