Liu Junfeng, Lelek Mickaël, Yang Yunfeng, Salles Audrey, Zimmer Christophe, Shen Yulong, Krupovic Mart
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
mBio. 2025 Feb 5;16(2):e0099124. doi: 10.1128/mbio.00991-24. Epub 2024 Dec 19.
Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon . Our data suggest that ESCRT-III plays an active role during the early stage of membrane constriction during cytokinesis, whereas ESCRT-III-1 and ESCRT-III-2 are indispensable for the "pre-late" and "late" stages of cytokinesis, respectively. In the deletion strain, the division is blocked when the mid-cell constriction reaches ~30% of the initial cell diameter ("pre-late" stage), yielding "chain-like" cellular aggregates. Depletion of ESCRT-III-2 leads to the accumulation of cells connected through narrow membrane bridges ("late" stage), consistent with the key role of this protein in the final membrane abscission. We used 3D-single molecule localization microscopy to image ESCRT-III rings of different diameters and show that the decrease in the ESCRT-III ring diameter and membrane constriction are inconsistent with a mechanism exclusively based on spiraling of the ESCRT-III filaments. By contrast, the cone-shaped assemblies of ESCRT-III-1 and ESCRT-III-2 are consistent with spiral formation, highlighting the distinct roles of the three ESCRT-III proteins during the cytokinesis. We propose the "relay race" model, whereby the cytokinesis is achieved through a sequential and concerted action of different ESCRT machinery components.
Two major cytokinesis mechanisms, rooted in contractile FtsZ and endosomal sorting complexes required for transport (ESCRT) rings, respectively, have emerged in the course of evolution. Whereas bacteria rely on the FtsZ-based mechanism, different lineages of archaea use either of the two systems, and eukaryotes have inherited the ESCRT-based cell division machinery from their archaeal ancestors. The mechanism of ESCRT-based cell division in archaea remains poorly understood and mechanistic studies on different archaeal model systems are essential to unravel the natural history of the ESCRT machinery. Here we investigate the interplay between three major ESCRT-III homologs during the division of a hyperthermophilic archaeon and propose the "relay race" model of cytokinesis.
细胞分裂是确保所有细胞生命形式得以延续的基本过程。硫化叶菌目古菌通过一种更简单版本的真核细胞内体运输所需分选复合体(ESCRT)机制进行分裂,该机制由三种ESCRT-III同源物(ESCRT-III、-III-1和-III-2)、AAA+ATP酶Vps4以及一个古菌特异性组分CdvA组成。在此,我们阐明了这些组分如何依次发挥作用来驱动嗜热古菌的分裂。我们的数据表明,ESCRT-III在胞质分裂期间膜缢缩的早期阶段发挥积极作用,而ESCRT-III-1和ESCRT-III-2分别在胞质分裂的“前后期”和“后期”不可或缺。在缺失菌株中,当细胞中部缢缩达到初始细胞直径的约30%(“前后期”阶段)时,分裂受阻,产生“链状”细胞聚集体。ESCRT-III-2的缺失导致细胞通过狭窄的膜桥相连(“后期”阶段),这与该蛋白在最终膜脱离中的关键作用一致。我们使用三维单分子定位显微镜对不同直径的ESCRT-III环进行成像,结果表明ESCRT-III环直径的减小和膜缢缩与仅基于ESCRT-III细丝螺旋化的机制不一致。相比之下,ESCRT-III-1和ESCRT-III-2的锥形组装与螺旋形成一致,突出了三种ESCRT-III蛋白在胞质分裂过程中的不同作用。我们提出了“接力赛”模型,即胞质分裂是通过不同ESCRT机制组分的依次协同作用实现的。
在进化过程中出现了两种主要的胞质分裂机制,分别源于收缩性FtsZ和内体运输所需分选复合体(ESCRT)环。细菌依赖基于FtsZ的机制,而不同的古菌谱系使用这两种系统中的一种,真核生物则从其古菌祖先那里继承了基于ESCRT的细胞分裂机制。古菌中基于ESCRT的细胞分裂机制仍知之甚少,对不同古菌模型系统的机制研究对于揭示ESCRT机制的自然历史至关重要。在此,我们研究了嗜热古菌分裂过程中三种主要ESCRT-III同源物之间的相互作用,并提出了胞质分裂的“接力赛”模型。