Llaguno-Roque José-Luis, Barrientos-Martínez Rocio-Erandi, Acosta-Mesa Héctor-Gabriel, Barranca-Enríquez Antonia, Mezura-Montes Efrén, Romo-González Tania
Laboratorio de Biología y Salud Integral, Instituto de Investigaciones Biológicas - Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, Industrial Animas. C.P., Xalapa, Veracruz 91190, México.
Instituto de Investigaciones en Inteligencia Artificial - Universidad Veracruzana, Campus Sur, Calle Paseo Lote II, Sección Segunda N° 112, Nuevo Xalapa, C.P., Xalapa, Veracruz 91097, México.
J Proteome Res. 2025 Jan 3;24(1):289-302. doi: 10.1021/acs.jproteome.4c00759. Epub 2024 Dec 19.
Breast cancer (BC) has become a global health problem, ranking first in incidence and fifth in mortality in women around the world. Although there are some diagnostic methods for the disease, these are not sufficiently effective and are invasive. In this work, we discriminated between patients without breast pathology (BP), with benign BP, and with BC based on the band patterns obtained from Western blot strip images of the autoantibody response to antigens of the T47D tumor line using and comparing supervised machine learning techniques to have a sensitive and accurate method. When comparing the aforementioned machine learning techniques, it was found that by obtaining a convolutional neural network architecture from a neuroevolution algorithm, it is possible to automatically discriminate with a classification accuracy of 90.67% between patients with cancer and with/without BP. In the case of discrimination between patients with cancer and without BP, a classification accuracy of 96.67% was obtained with the K-NN algorithm and 95.13% with the convolutional neural network obtained using a neuroevolution algorithm, although these results are not statistically significant. It is concluded that the convolutional neural network obtained by neuroevolution is the method with the best performance with respect to those evaluated in this work.
乳腺癌(BC)已成为一个全球性的健康问题,在全球女性中发病率排名第一,死亡率排名第五。尽管针对该疾病有一些诊断方法,但这些方法不够有效且具有侵入性。在这项工作中,我们基于使用并比较监督式机器学习技术从T47D肿瘤系抗原的自身抗体反应的蛋白质免疫印迹条带图像获得的条带模式,区分了无乳腺病变(BP)的患者、患有良性BP的患者和患有BC的患者,以获得一种灵敏且准确的方法。在比较上述机器学习技术时发现,通过从神经进化算法获得卷积神经网络架构,可以在癌症患者与有/无BP的患者之间以90.67%的分类准确率进行自动区分。在区分癌症患者和无BP患者的情况下,使用K-NN算法获得的分类准确率为96.67%,使用神经进化算法获得的卷积神经网络的分类准确率为95.13%,尽管这些结果在统计学上不显著。结论是,相对于本研究中评估的其他方法,通过神经进化获得的卷积神经网络是性能最佳的方法。