Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
J Magn Reson. 2022 Aug;341:107263. doi: 10.1016/j.jmr.2022.107263. Epub 2022 Jul 2.
High-resolution investigation of cell wall materials has emerged as an important application of biomolecular solid-state NMR (ssNMR). Multidimensional correlation experiments have become a standard method for obtaining sufficient spectral resolution to determine the polymorphic structure of carbohydrates and address biochemical questions regarding the supramolecular organization of cell walls. Using plant cellulose and matrix polysaccharides as examples, we will review how the multifaceted complexity of polysaccharide structure is impeding the resonance assignment process and assess the available biochemical and spectroscopic approaches that could circumvent this barrier. We will emphasize the ineffectiveness of the current methods in reconciling the ever-growing dataset and deriving structural information. We will evaluate the protocols for achieving efficient and homogeneous hyperpolarization across the cell wall material using magic-angle spinning dynamic nuclear polarization (MAS-DNP). Critical questions regarding the line-broadening effects of cell wall molecules at cryogenic temperature and by paramagnetic biradicals will be considered. Finally, the MAS-DNP method will be placed into a broader context with other structural characterization techniques, such as cryo-electron microscopy, to advance ssNMR research in carbohydrate and cell wall biomaterials.
高分辨率的细胞壁材料研究已成为生物分子固态 NMR(ssNMR)的一个重要应用。多维相关实验已成为获得足够光谱分辨率的标准方法,可用于确定碳水化合物的多晶结构,并解决有关细胞壁超分子组织的生化问题。本文以植物纤维素和基质多糖为例,综述了多糖结构的多方面复杂性如何阻碍共振分配过程,并评估了可能克服这一障碍的现有生化和光谱方法。我们将强调当前方法在协调不断增长的数据集和推导结构信息方面的无效性。我们将评估使用魔角旋转动态核极化(MAS-DNP)在细胞壁材料中实现高效和均匀极化的方案。还将考虑细胞壁分子在低温和顺磁双自由基下的线宽效应的关键问题。最后,将 MAS-DNP 方法置于与其他结构特征技术(如冷冻电子显微镜)更广泛的背景下,以推进碳水化合物和细胞壁生物材料的 ssNMR 研究。