Suppr超能文献

通过机器学习方法在单细胞水平识别鼻咽组织中的新型冠状病毒2感染。

Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method.

作者信息

Bao YuSheng, Ma QingLan, Chen Lei, Feng KaiYan, Guo Wei, Huang Tao, Cai Yu-Dong

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

出版信息

Mol Immunol. 2025 Jan;177:44-61. doi: 10.1016/j.molimm.2024.12.004. Epub 2024 Dec 18.

Abstract

SARS-CoV-2 has posed serious global health challenges not only because of the high degree of virus transmissibility but also due to its severe effects on the respiratory system, such as inducing changes in multiple organs through the ACE2 receptor. This virus makes changes to gene expression at the single-cell level and thus to cellular functions and immune responses in a variety of cell types. Previous studies have not been able to resolve these mechanisms fully, and so our study tries to bridge knowledge gaps about the cellular responses under conditions of infection. We performed single-cell RNA-sequencing of nasopharyngeal swabs from COVID-19 patients and healthy controls. We assembled a dataset of 32,588 cells for 58 subjects for analysis. The data were sorted into eight cell types: ciliated, basal, deuterosomal, goblet, myeloid, secretory, squamous, and T cells. Using machine learning, including nine feature ranking algorithms and two classification algorithms, we classified the infection status of single cells and analyzed gene expression to pinpoint critical markers of SARS-CoV-2 infection. Our findings show distinct gene expression profiles between infected and uninfected cells across diverse cell types, with key indicators such as FKBP4, IFITM1, SLC35E1, CD200R1, MT-ATP6, KRT13, RBM15, and FTH1 illuminating unique immune responses and potential pathways for viral spread and immune evasion. The machine learning methods effectively differentiated between infected and non-infected cells, shedding light on the cellular heterogeneity of SARS-CoV-2 infection. The findings will improve our knowledge of the cellular dynamics of SARS-CoV-2.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)不仅因其高度的病毒传播性,还因其对呼吸系统的严重影响,如通过血管紧张素转换酶2(ACE2)受体诱导多个器官发生变化,给全球健康带来了严峻挑战。这种病毒在单细胞水平上改变基因表达,进而影响多种细胞类型的细胞功能和免疫反应。以往的研究未能完全解析这些机制,因此我们的研究试图填补关于感染条件下细胞反应的知识空白。我们对新冠肺炎患者和健康对照者的鼻咽拭子进行了单细胞RNA测序。我们组装了一个包含58名受试者的32588个细胞的数据集进行分析。数据被分类为八种细胞类型:纤毛细胞、基底细胞、双小体囊泡细胞、杯状细胞、髓样细胞、分泌细胞、鳞状细胞和T细胞。我们使用机器学习,包括九种特征排序算法和两种分类算法,对单细胞的感染状态进行分类,并分析基因表达以确定SARS-CoV-2感染的关键标志物。我们的研究结果显示,不同细胞类型中感染细胞和未感染细胞之间存在明显的基因表达谱,FKBP4、IFITM1、SLC35E1、CD200R1、MT-ATP6、KRT13、RBM15和FTH1等关键指标揭示了独特的免疫反应以及病毒传播和免疫逃逸的潜在途径。机器学习方法有效地鉴别了感染细胞和未感染细胞,揭示了SARS-CoV-2感染的细胞异质性。这些研究结果将增进我们对SARS-CoV-2细胞动态的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验