Suppr超能文献

低温单分子荧光成像。

Cryogenic single-molecule fluorescence imaging.

作者信息

Yu Phil Sang, Kim Chae Un, Lee Jong-Bong

机构信息

Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.

出版信息

BMB Rep. 2025 Jan;58(1):2-7. doi: 10.5483/BMBRep.2024-0180.

Abstract

Cryo-fixation techniques, including cryo-electron and cryofluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-tonoise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect photon detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field. [BMB Reports 2025; 58(1): 2-7].

摘要

冷冻固定技术,包括冷冻电子显微镜和冷冻荧光显微镜,通过将生物样品快速冷冻成非晶冰相,使其能够以接近天然的状态保存。这些方法可防止化学固定常常导致的结构扭曲,从而实现高分辨率成像。在低温下,荧光团表现出改善的特性,如延长的荧光寿命、减少的光漂白以及增强的信噪比,使得单分子成像更加准确且富有洞察力。尽管有这些优点,但挑战依然存在,包括用于单分子成像的物镜和低温载物台的数值孔径限制,这可能会影响光子检测和空间分辨率。近期在低温领域的进展已经缓解了这些问题,实现了纳米级别的分辨率。展望未来,超分辨率技术、优化的荧光团以及基于人工智能(AI)的数据分析方面的创新有望进一步推动该领域的发展,为生物分子动力学和相互作用提供更深入的见解。在这篇小型综述中,我们将介绍低温单分子荧光成像技术,并讨论该领域的未来前景。[《BMB报告》2025年;58(1): 2 - 7]

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c86b/11788530/686faaef4d7d/bmb-58-1-2-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验