Zucker Mark, Perry Maria A, Gould Samuel I, Elkrief Arielle, Safonov Anton, Thummalapalli Rohit, Mehine Miika, Chakravarty Debyani, Brannon A Rose, Ladanyi Marc, Razavi Pedram, Donoghue Mark T A, Murciano-Goroff Yonina R, Grigoriadis Kristiana, McGranahan Nicholas, Jamal-Hanjani Mariam, Swanton Charles, Chen Yuan, Shen Ronglai, Chandarlapaty Sarat, Solit David B, Schultz Nikolaus, Berger Michael F, Chang Jason, Schoenfeld Adam J, Sánchez-Rivera Francisco J, Reznik Ed, Bandlamudi Chaitanya
Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Cell. 2025 Feb 6;188(3):851-867.e17. doi: 10.1016/j.cell.2024.11.010. Epub 2024 Dec 18.
The canonical model of tumor suppressor gene (TSG)-mediated oncogenesis posits that loss of both alleles is necessary for inactivation. Here, through allele-specific analysis of sequencing data from 48,179 cancer patients, we define the prevalence, selective pressure for, and functional consequences of biallelic inactivation across TSGs. TSGs largely assort into distinct classes associated with either pan-cancer (Class 1) or lineage-specific (Class 2) patterns of selection for biallelic loss, although some TSGs are predominantly monoallelically inactivated (Class 3/4). We demonstrate that selection for biallelic inactivation can be utilized to identify driver genes in non-canonical contexts, including among variants of unknown significance (VUSs) of several TSGs such as KEAP1. Genomic, functional, and clinical data collectively indicate that KEAP1 VUSs phenocopy established KEAP1 oncogenic alleles and that zygosity, rather than variant classification, is predictive of therapeutic response. TSG zygosity is therefore a fundamental determinant of disease etiology and therapeutic sensitivity.
肿瘤抑制基因(TSG)介导肿瘤发生的经典模型认为,两个等位基因的缺失对于失活是必要的。在此,通过对48179例癌症患者测序数据的等位基因特异性分析,我们确定了双等位基因失活在TSG中的普遍性、选择压力及其功能后果。TSG在很大程度上可分为与双等位基因缺失的泛癌(第1类)或谱系特异性(第2类)选择模式相关的不同类别,尽管一些TSG主要是单等位基因失活(第3/4类)。我们证明,双等位基因失活的选择可用于在非经典背景下识别驱动基因,包括在几个TSG(如KEAP1)的意义未明变异(VUS)中。基因组、功能和临床数据共同表明KEAP1 VUS模拟了已确定的KEAP1致癌等位基因,并且杂合性而非变异分类可预测治疗反应。因此,TSG杂合性是疾病病因和治疗敏感性的基本决定因素。